
UIKit User Interface Catalog

Contents

Views 15

About Views 16
Content of Views 17
Behavior of Views 18
Appearance of Views 19

Background Color and Alpha 19
Appearance Proxies 19
Tint Color 20
Template Images 20

Using Auto Layout with Views 21
Making Views Accessible 22
Debugging Views 22

Action Sheets 23
Content of Action Sheets (Programmatic) 23
Behavior of Action Sheets (Programmatic) 24
Using Auto Layout with Action Sheets 25
Making Action Sheets Accessible 25
Internationalizing Action Sheets 25
Debugging Action Sheets 26
Elements Similar to an Action Sheet 26

Activity Indicators 27
Content of Activity Indicators 27
Behavior of Activity Indicators 28
Appearance of Activity Indicators 28

Style 28
Using Auto Layout with Activity Indicators 29
Making Activity Indicators Accessible 29
Internationalizing Activity Indicators 30
Debugging Activity Indicators 30
Elements Similar to an Activity Indicator 30

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

2

Alert Views 31
Content of Alert Views (Programmatic) 31
Behavior of Alert Views (Programmatic) 33
Appearance of Alert Views 33
Using Auto Layout with Alert Views 33
Making Alert Views Accessible 34
Internationalizing Alert Views 34
Debugging Alert Views 34
Elements Similar to an Alert View 34

Collection Views 36
Content of Collection Views 37
Behavior of Collection Views 38
Appearance of Collection Views 39

Layout 39
Background 40
Cell Background 40
Spacing 40
Cell Padding 41

Using Auto Layout with Collection Views 41
Making Collection Views Accessible 41
Internationalizing Collection Views 41
Elements Similar to a Collection View 42

Image Views 43
Content of Image Views 44
Behavior of Image Views 45
Appearance of Image Views 45

Content Mode 45
Images 46
Transparency and Alpha Blending 46

Using Auto Layout with Image Views 47
Making Image Views Accessible 47
Internationalizing Image Views 47
Debugging Image Views 48
Elements Similar to an Image View 49

Labels 50
Content of Labels 52
Behavior of Labels 52

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

3

Contents

Appearance of Labels 53
Text Appearance 53
Highlighted Appearance 54
Text Shadow 54

Using Auto Layout with Labels 54
Making Labels Accessible 54
Internationalizing Labels 55
Debugging Labels 55
Elements Similar to a Label 55

Navigation Bars 56
Content of Navigation Bars 57
Behavior of Navigation Bars 58
Appearance of Navigation Bars 59

Bar Style 59
Tint Color 59
Images 60
Translucency 60
Title Attributes 60
Bar Button Item Icons 61

Using Auto Layout with Navigation Bars 61
Making Navigation Bars Accessible 61
Internationalizing Navigation Bars 61
Debugging Navigation Bars 61
Elements Similar to a Navigation Bar 62

Picker Views 63
Content of Picker Views (Programmatic) 63
Behavior of Picker Views 64
Appearance of Picker Views (Programmatic) 64
Using Auto Layout with Picker Views 64
Making Picker Views Accessible 65
Internationalizing Picker Views 65
Debugging Picker Views 65
Elements Similar to a Picker View 65

Progress Views 66
Content of Progress Views 67
Behavior of Progress Views 67
Appearance of Progress Views 67

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

4

Contents

Style 68
Tint Color 68

Using Auto Layout with Progress Views 68
Making Progress Views Accessible 69
Internationalizing Progress Views 69
Elements Similar to a Progress View 69

Scroll Views 70
Content of Scroll Views 71
Behavior of Scroll Views 71
Appearance of Scroll Views 74

Style 74
Content Layout 75

Using Auto Layout with Scroll Views 75
Making Scroll Views Accessible 75
Internationalizing Scroll Views 75
Elements Similar to a Scroll View 75

Search Bars 76
Content of Search Bars 78
Behavior of Search Bars 79
Appearance of Search Bars 80

Style 80
Tint Color 80
Background Images 81
Translucency 81
Layout 81

Using Auto Layout with Search Bars 81
Making Search Bars Accessible 82
Internationalizing Search Bars 82
Debugging Navigation Bars 82
Elements Similar to a Search Bar 83

Tab Bars 84
Using Auto Layout with Tab Bars 87
Making Tab Bars Accessible 87
Internationalizing Tab Bars 87
Elements Similar to a Tab Bar 87

Table Views 89

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

5

Contents

Content of Table Views 93
Behavior of Table Views 94
Appearance of Table Views 96

Style 97
Cell Selection Style 97
Accessory Types 97
Cell Layout 97
Header and Footer Appearance 98

Using Auto Layout with Table Views 98
Making Table Views Accessible 98
Internationalizing Table Views 98
Elements Similar to a Table View 98

Text Views 100
Content of Text Views 101
Behavior of Text Views 102
Appearance of Text Views 103

Text Appearance 103
Using Auto Layout with Text Views 104
Making Text Views Accessible 104
Internationalizing Text Views 104
Debugging Text Views 104
Elements Similar to a Text View 105

Toolbars 106
Content of Toolbars 107
Behavior of Toolbars 108
Appearance of Toolbars 109

Style 109
Tint Color 110
Background Images 110
Translucency 110
Bar Button Item Icons 111

Using Auto Layout with Toolbars 111
Making Toolbars Accessible 111
Internationalizing Toolbars 111
Debugging Toolbars 112
Elements Similar to a Toolbar 112

Web Views 113

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

6

Contents

Content of Web Views (Programmatic) 115
Behavior of Web Views 115
Appearance of Web Views 116
Using Auto Layout with Web Views 116
Making Web Views Accessible 116
Internationalizing Web Views 116
Debugging Web Views 117
Elements Similar to a Web View 117

Controls 118

About Controls 119
Content of Controls 120
Behavior of Controls 120

Control States 120
Control Events 121
Target-Action Mechanism 121

Appearance of Controls 122
Content Alignment 122

Using Auto Layout with Controls 123
Making Controls Accessible 124

Buttons 126
Content of Buttons 128
Behavior of Buttons 128
Appearance of Buttons 129

State 129
Shadow 130
Tint Color 130
Title Attributes 131
Images 131
Edge Insets 132

Using Auto Layout with Buttons 132
Making Buttons Accessible 132
Internationalizing Buttons 133
Elements Similar to a Button 133

Date Pickers 134
Content of Date Pickers 135
Behavior of Date Pickers 136

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

7

Contents

Appearance of Date Pickers 137
Using Auto Layout with Date Pickers 138
Making Date Pickers Accessible 138
Internationalizing Date Pickers 138
Debugging Date Pickers 139
Elements Similar to a Date Picker 139

Page Controls 140
Content of Page Controls 141
Behavior of Page Controls 141
Appearance of Page Controls 142

Tint Color 142
Using Auto Layout with Page Controls 143
Making Page Controls Accessible 143
Internationalizing Page Controls 143
Debugging Page Controls 144
Elements Similar to a Page Control 144

Segmented Controls 145
Content of Segmented Controls 146
Behavior of Segmented Controls 146
Appearance of Segmented Controls 148

Tint Color 148
Style 149
Content Offset 149
Images 149
Title Attributes 149
Segment Icons 150

Using Auto Layout with Segmented Controls 150
Making Segmented Controls Accessible 150
Internationalizing Segmented Controls 150
Debugging Segmented Controls 151
Elements Similar to a Segmented Control 151

Sliders 152
Content of Sliders 153
Behavior of Sliders 153
Appearance of Sliders 154

Minimum and Maximum Value Images 155
Tint Color 155

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

8

Contents

Track and Thumb Images (Programmatic) 155
Using Auto Layout with Sliders 156
Making Sliders Accessible 157
Internationalizing Sliders 157
Debugging Sliders 157
Elements Similar to a Slider 158

Steppers 159
Content of Steppers 160
Behavior of Steppers 160
Appearance of Steppers 161

Tint Color (Programmatic) 161
Icons 162
Background and Divider Images 162

Using Auto Layout with Steppers 162
Making Steppers Accessible 162
Internationalizing Steppers 163
Elements Similar to a Stepper 163

Switches 164
Content of Switches 165
Behavior of Switches (Programmatic) 165
Appearance of Switches 165

Tint Color 166
Using Auto Layout with Switches 166
Making Switches Accessible 166
Internationalizing Switches 167
Debugging Switches 167
Elements Similar to a Switch 167

Text Fields 168
Content of Text Fields 169
Behavior of Text Fields 169
Appearance of Text Fields 171

Border Style 171
Text Attributes 171
Font Size 172
Images 172

Using Auto Layout with Text Fields 172
Making Text Fields Accessible 172

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

9

Contents

Internationalizing Text Fields 173
Elements Similar to a Text Field 173

Attributes Inspector Reference 174

Activity Indicator View 176
Activity Indicator View Attributes Inspector Reference 176

Appearance and Behavior 176

Bar Button Item 178
Bar Button Item Attributes Inspector Reference 178

Appearance 178

Bar Item 181
Bar Item Attributes Inspector Reference 181

Appearance, Behavior, and Tagging 181

Button 182
Button Attributes Inspector Reference 182

Type 182
Appearance 183
Behavior 186
Edge Insets 188

Collection Reusable View 190
Collection Reusable View Attributes Inspector Reference 190

Cell Reuse 190

Collection View 191
Collection View Attributes Inspector Reference 191

Layout, Scrolling, Header, and Footer 191

Collection View Cell 193
Collection View Cell Attributes Inspector Reference 193

Cell Reuse 193

Control 194
Control Attributes Inspector Reference 194

Layout 194
Behavior 195

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

10

Contents

Date Picker 197
Date Picker Attributes Inspector Reference 197

Functionality 197
Date 198
Count Down Timer 199

Image View 200
Image View Attributes Inspector Reference 200

Images 200
Behavior 200

Label 202
Label Attributes Inspector Reference 202

Text and Behavior 202
Text Baseline and Line Breaks 205
Text Sizing 206
Text Highlight and Shadow 207

Navigation Bar 208
Navigation Bar Attributes Inspector Reference 208

Appearance 208

Navigation Item 209
Navigation Item Attributes Inspector Reference 209

PropertyGroup 209

Page Control 210
Page Control Attributes Inspector Reference 210

Behavior and Pages 210
Appearance 211

Picker View 212
Picker View Attributes Inspector Reference 212

Behavior 212

Progress View 213
Progress View Attributes Inspector Reference 213

Appearance and Progress 213

Scroll View 214

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

11

Contents

Scroll View Attributes Inspector Reference 214
Appearance 214
Scroll Indicators and Scrolling 215
Scroll Bounce 216
Zooming 217
Events and Zoom Bounce 218

Search Bar 220
Search Bar Attributes Inspector Reference 220

Search Term and Captions 220
Appearance 221
Capabilities 221
Scope Titles 223
Text Input 223

Segmented Control 225
Segmented Control Attributes Inspector Reference 225

Appearance and Behavior 225
Segment Appearance and Behavior 226

Slider 229
Slider Attributes Inspector Reference 229

Value 229
Images 230
Appearance 230
Update Events 231

Stepper 232
Stepper Attributes Inspector Reference 232

Value 232
Behavior 233

Switch 234
Switch Attributes Inspector Reference 234

Appearance and State 234

Tab Bar 235
Tab Bar Attributes Inspector Reference 235

Appearance 235

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

12

Contents

Tab Bar Item 236
Tab Bar Item Attributes Inspector Reference 236

Appearance 236

Table View 238
Table View Attributes Inspector Reference 238

Appearance 238
Behavior 239
Table Index 240

Table View Cell 241
Table View Cell Attributes Inspector Reference 241

Style 241
Cell Reuse 242
Appearance 242
Indentation and Behavior 243

Text View 245
Text View Attributes Inspector Reference 245

Text 245
Behavior 248
Data Detection 248
Text Input and Keyboard 250

Toolbar 253
Toolbar Attributes Inspector Reference 253

Appearance 253

View 254
View Attributes Inspector Reference 254

Layout and Tagging 254
Events 255
Appearance 256
Drawing and Sizing 256
Sizing 258

Web View 259
Web View Attributes Inspector 259

Scaling 259
Detection 259

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

13

Contents

Document Revision History 261

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

14

Contents

 ● “About Views” (page 16)

 ● “Action Sheets” (page 23)

 ● “Activity Indicators” (page 27)

 ● “Alert Views” (page 31)

 ● “Collection Views” (page 36)

 ● “Image Views” (page 43)

 ● “Labels” (page 50)

 ● “Navigation Bars” (page 56)

 ● “Picker Views” (page 63)

 ● “Progress Views” (page 66)

 ● “Scroll Views” (page 70)

 ● “Search Bars” (page 76)

 ● “Tab Bars” (page 84)

 ● “Table Views” (page 89)

 ● “Text Views” (page 100)

 ● “Toolbars” (page 106)

 ● “Web Views” (page 113)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

15

Views

Views are the building blocks for constructing your user interface. Rather than using one view to present your
content, you are more likely to use several views, ranging from simple buttons and text labels to more complex
views such as table views, picker views, and scroll views. Each view represents a particular portion of your user
interface and is generally optimized for a specific type of content. By building view upon view, you get a view
hierarchy.

Purpose. Views allow users to:

 ● Experience app content

 ● Navigate within an app

Implementation. Views are implemented in the UIView class and discussed in UIView Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

16

About Views

Configuration. Configure views in Interface Builder, in the View section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Content of Views
All views in UIKit are subclasses of the base class UIView. For example, UIKit has views specifically for presenting
images, text, and other types of content. In places where the predefined views do not provide what you need,
you can also define custom views and manage the drawing and event handling yourself.

Use the Mode (contentMode) field to specify how a view lays out its content when its bounds change. This
property is often used to implement resizable controls. Instead of redrawing the contents of the view every
time its bounds change, you can use this property to specify that you want to scale the contents or pin them
to a particular spot on the view.

About Views
Content of Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

17

The Tag (tag) field serves as an integer that you can use to identify view objects in your app.

Behavior of Views
By default, the User Interaction Enabled (userInteractionEnabled) checkbox is selected, which means
that user events—such as touch and keyboard—are delivered to the view normally. When the checkbox is
unselected, events intended for the view are ignored and removed from the event queue.

The Multiple Touch (multipleTouchEnabled) checkbox is unselected by default, which means that the view
receives only the first touch event in a multi-touch sequence. When selected, the view receives all touches
associated with a multitouch sequence.

Views have a number of properties related to drawing behavior:

 ● The Opaque (opaque) checkbox tells the drawing system how it should treat the view. If selected, the
drawing system treats the view as fully opaque, which allows the drawing system to optimize some drawing
operations and improve performance. If unselected, the drawing system composites the view normally
with other content. You should always disable this checkbox if your view is fully or partially transparent.

 ● If the Hidden (hidden) checkbox is selected, the view disappears from its window and does not receive
input events.

 ● When the Clears Graphics Context (clearsContextBeforeDrawing) checkbox is selected, the drawing
buffer is automatically cleared to transparent black before the view is drawn. This behavior ensures that
there are no visual artifacts left over when the view’s contents are redrawn.

 ● Selecting the Clip Subviews (clipsToBounds) checkbox causes subviews to be clipped to the bounds of
the view. If unselected, subviews whose frames extend beyond the visible bounds of the view are not
clipped.

About Views
Behavior of Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

18

 ● When the Autoresize Subviews (autoresizesSubviews) checkbox is selected, the view adjusts the size
of its subviews when its bounds change.

Appearance of Views

Background Color and Alpha
Adjusting the Alpha (alpha) field changes the transparency of the view as a whole. This value can range from
0.0 (transparent) to 1.0 (opaque). Setting a view’s alpha value does not have an effect on embedded subviews.

Use the Background (backgroundColor) field to select a color to fill in the entire frame of the view. The
background color appears underneath all other content in the view.

Appearance Proxies
You can use an appearance proxy to set particular appearance properties for all instances of a view in your
application. For example, if you want all sliders in your app to have a particular minimum track tint color, you
can specify this with a single message to the slider’s appearance proxy.

There are two ways to customize appearance for objects: for all instances and for instances contained within
an instance of a container class.

 ● To customize the appearance of all instances of a class, use appearance to get the appearance proxy for
the class.

[[UISlider appearance] setMinimumTrackTintColor:[UIColor greenColor]];

 ● To customize the appearances for instances of a class when contained within an instance of a container
class, or instances in a hierarchy, you use appearanceWhenContainedIn: to get the appearance proxy
for the class.

[[UISlider appearanceWhenContainedIn:[UIView class], nil]

setMinimumTrackTintColor:[UIColor greenColor]];

About Views
Appearance of Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

19

Note: You cannot use the appearance proxy with the tintColor property on UIView. For more
information on using tintColor, see “Tint Color” (page 20).

Tint Color
Views have a tintColor property that specifies the color of key elements within the view. Each subclass of
UIView defines its own appearance and behavior for tintColor. For example, this property determines the
color of the outline, divider, and icons on a stepper:

The tintColor property is a quick and simple way to skin your app with a custom color. Setting a tint color
for a view automatically sets that tint color for all of its subviews. However, you can manually override this
property for any of those subviews and its descendants. In other words, each view inherits its superview’s tint
color if its own tint color is nil. If the highest level view in the view hierarchy has a nil value for tint color, it
defaults to the system blue color.

Template Images
In iOS 7, you can choose to treat any of the images in your app as a template—or stencil—image. When you
elect to treat an image as a template, the system ignores the image’s color information and creates an image
stencil based on the alpha values in the image (parts of the image with an alpha value of less than 1.0 get
treated as completely transparent). This stencil can then be recolored using tintColor to match the rest of
your user interface.

By default, an image (UIImage) is created with UIImageRenderingModeAutomatic. If you have
UIImageRenderingModeAutomatic set on your image, it will be treated as template or original based on
its context. Certain UIKit elements—including navigation bars, tab bars, toolbars, segmented
controls—automatically treat their foreground images as templates, although their background images are
treated as original. Other elements—such as image views and web views—treat their images as originals. If
you want your image to always be treated as a template regardless of context, set
UIImageRenderingModeAlwaysTemplate; if you want your image to always be treated as original, set
UIImageRenderingModeAlwaysOriginal.

To specify the rendering mode of an image, first create a standard image, and then call the
imageWithRenderingMode: method on that image.

UIImage *myImage = [UIImage imageNamed:@"myImageFile.png"];

About Views
Appearance of Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

20

myImage = [myImage imageWithRenderingMode:UIImageRenderingModeAlwaysTemplate];

Using Auto Layout with Views
The Auto Layout system allows you to define layout constraints for user interface elements, such as views and
controls. Constraints represent relationships between user interface elements. You can create Auto Layout
constraints by selecting the appropriate element or group of elements and selecting an option from the menu
in the bottom right corner of Xcode’s Interface Builder.

Auto layout contains two menus of constraints: pin and align. The Pin menu allows you to specify constraints
that define some relationship based on a particular value or range of values. Some apply to the control itself
(width) while others define relationships between elements (horizontal spacing). The following tables describes
what each group of constraints in the Auto Layout menu accomplishes:

PurposeConstraint Name

Sets the width or height of a single element.

Sets the horizontal or vertical spacing between exactly two elements.

Sets the spacing from one or more elements to the leading, trailing, top,
or bottom of their container view. Leading and trailing are the same as
left and right in English, but the UI flips when localized in a right-to-left
environment.

Sets the widths or heights of two or more elements equal to each other.

Aligns the left, right, top, or bottom edges of two or more elements.

Aligns two or more elements according to their horizontal centers, vertical
centers, or bottom baselines. Note that baselines are different from bottom
edges. These values may not be defined for certain elements.

Aligns the horizontal or vertical centers of one or more elements with
the horizontal or vertical center of their container view.

About Views
Using Auto Layout with Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

21

The “Constant” value specified for any Pin constraints (besides Widths/Heights Equally) can be part of a
“Relation.” That is, you can specify whether you want the value of that constraint to be equal to, less than or
equal to, or greater than or equal to the value.

For more information, see Auto Layout Guide .

Making Views Accessible
To enhance the accessibility information for an item, select the object on the storyboard and open the
Accessibility section of the Identity inspector.

For more information, see Accessibility Programming Guide for iOS .

Debugging Views
When debugging issues with views, watch for this common pitfall:

Setting conflicting opacity settings. You should not set the opaque property to YES if your view has an alpha
value of less than 1.0.

About Views
Making Views Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

22

Action sheets display a set of buttons representing several alternative choices to complete a task initiated by
the user. For example, when the user taps the Share button in an app’s toolbar, an action sheet appears offering
a list of choices, such as Email, Print, and so on.

Purpose. Action sheets allow users to:

 ● Quickly select from a list of actions

 ● Confirm or cancel an action

Implementation. Action sheets are implemented in the UIActionSheet class and discussed in the
UIActionSheet Class Reference .

Configuration. Action sheets are created, initialized, and configured in code, typically residing in a view
controller implementation file.

Content of Action Sheets (Programmatic)
You cannot create or manipulate action sheets in Interface Builder. Rather, an action sheet floats over an existing
view to interrupt its presentation, and it requires the user to dismiss it.

When you create an action sheet object from the UIActionSheet class, you can initialize its most important
properties with one method,
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

23

Action Sheets

Depending on your app’s needs, that single message may be enough to configure a fully functional action
sheet object, as shown in the following code. Once you have created the action sheet object, send it a show...
message, such as showInView: to display the action sheet.

UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:nil

delegate:self

cancelButtonTitle:@"Cancel"

destructiveButtonTitle:@"Delete Note"

otherButtonTitles:nil];

Although the first parameter of the
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:
method enables you to provide a title for an action sheet, iOS human interface guidelines recommend that
you do not use a title.

As described in iOS human interface guidelines, you should include a Cancel button with action sheets displayed
on iPhone and with those displayed on iPad over an open popover. Otherwise on iPad, action sheets are
displayed within a popover, and the user can cancel the action sheet by tapping outside the popover, in which
case you do not need to include a Cancel button.

To create a Cancel button, pass a non-nil value for the cancelButtonTitle: parameter of the
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:
method. A Cancel button created in this way is positioned at the bottom of the action sheet.

When your action sheet presents a potentially destructive choice, you should include a destructive button by
passing a non-nil value for the destructiveButtonTitle: parameter of the
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:
method. A destructive button created in this way is automatically colored red and positioned at the top of the
action sheet.

Behavior of Action Sheets (Programmatic)
You can choose to present an action sheet so that it originates from a toolbar, tab bar, button bar item, from
a view, or from a rectangle within a view. On iPhone, because the action sheet slides up from the bottom of a
view and covers the width of the screen, most apps use showInView:. On iPad, however, action sheets appear
within a popover whose arrow points to the control the user tapped to invoke the choices presented by the
action sheet. So, showFromRect:inView:animated: and showFromBarButtonItem:animated: are most
useful on iPad.

Action Sheets
Behavior of Action Sheets (Programmatic)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

24

To handle the choices presented by your action sheet, you must designate a delegate to handle the button’s
action, and the delegate must conform to the UIActionSheetDelegate protocol. You designate the delegate
with the delegate parameter when you initialize the action sheet object. The delegate must implement the
actionSheet:clickedButtonAtIndex: message to respond when the button is tapped. For example, the
following code shows an implementation that simply logs the title of the button that was tapped.

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex

{

NSLog(@"The %@ button was tapped.", [actionSheet
buttonTitleAtIndex:buttonIndex]);

}

Using Auto Layout with Action Sheets
The layout of action sheets is handled for you. You cannot create Auto Layout constraints between an action
sheet and another user interface element.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Action Sheets Accessible
Action sheets are accessible by default.

Accessibility for action sheets primarily concerns button titles. If VoiceOver is activated, it speaks the word
“alert” when an action sheet is shown, then speaks its title if set (although iOS human interface guidelines
recommend against titling action sheets). As the user taps a button in the action sheet, VoiceOver speaks its
title and the word “button.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Action Sheets
To internationalize an action sheet, you must provide localized translations of the button titles. Button size
may change depending on the language and locale.

For more information, see Internationalization Programming Topics .

Action Sheets
Using Auto Layout with Action Sheets

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

25

Debugging Action Sheets
When debugging issues with action sheets, watch for this common pitfall:

Not testing localizations. Be sure to test the action sheets in your app with the localizations you intend to
ship. In particular, button titles can truncate if they are longer in localizations other than the one in which you
designed your user interface. Following the HI guideline to give buttons short, logical titles helps to ameliorate
this potential problem, but localization testing is also required.

Elements Similar to an Action Sheet
The following elements provide similar functionality to an action sheet:

 ● Alert View. Use an alert view to convey important information about an app or the device, interrupting
the user and requiring them to stop what they’re doing to choose an action or dismiss the alert. For more
information, see “Alert Views” (page 31).

 ● Modal View. Use a modal view (that is, the view controller uses a modal presentation style) when users
initiate a self-contained subtask in the context of their workflow or another task. For more information,
see UIViewController Class Reference .

Action Sheets
Debugging Action Sheets

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

26

An activity indicator is a spinning wheel that indicates a task is in the midst of being processed. If an action
takes a noticeable and indeterminate amount of time to process—such as a CPU-intensive task or connecting
to a network—you should display an activity indicator to give assurance to the user that your app is not stalled
or frozen.

Purpose. Activity indicators allow users to:

 ● Receive feedback that the system is processing information

Implementation. Activity indicators are implemented in the UIActivityIndicatorView class and discussed
in the UIActivityIndicatorView Class Reference .

Configuration. Configure activity indicators in Interface Builder, in the Activity Indicator section of the Attributes
Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Activity Indicators
An activity indicator is indeterminate, and has no starting or ending values associated with it.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

27

Activity Indicators

Behavior of Activity Indicators
The Animating (isAnimating) box is unchecked by default; checking it causes the activity indicator to start
animating. This is the equivalent of calling the startAnimating method.

Select the Hides When Stopped (hidesWhenStopped) field in the Attributes Inspector for your activity indicator
to disappear when the animation ends. When you call the startAnimating and stopAnimating methods,
the activity indicator automatically shows and hides onscreen. This way, you won’t have to worry about
displaying a stationary activity indicator.

Appearance of Activity Indicators
You can customize the appearance of an activity indicator by setting the properties depicted below.

To customize the appearance of all activity indicators in your app, use the appearance proxy (for example,
[UIActivityIndicatorView appearance]). For more information about appearance proxies, see
“Appearance Proxies” (page 19).

Style
The Style (activityIndicatorViewStyle) field represents the predefined style of the activity indicator.
Use the style to specify one of two default colors: white or gray. You can also select a larger size for your
indicator using the “Large White” style option.

Activity Indicators
Behavior of Activity Indicators

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

28

The Color (color) field allows you to specify a custom color for your indicator. This property takes precedence
over any color set using the Style field. However, if your style is set to Large White, your activity indicator
appears a larger size. Make sure your indicator is set to a different style option if you want to use the small
indicator.

Using Auto Layout with Activity Indicators
You can create Auto Layout constraints between an activity indicator and other UI elements.

Typically, activity indicators appear before a label or centered within a view. To align with a label, constrain
Bottom Edges and Horizontal Space to the label with the standard value. To center within a view, add the
Horizontal Center in Container and Vertical Center in Container constraints.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Activity Indicators Accessible
Activity indicators are accessible by default. The default accessibility trait for an activity indicator is User
Interaction Enabled.

If you have a label next to your activity indicator that describes the processing task in more detail, you might
want to disable its accessibility with the isAccessibilityElement property so VoiceOver reads the label
instead. Otherwise, VoiceOver reads “In progress” while the activity indicator is animating, and “Progress halted”
while it is not.

VoiceOver will read only elements that are visible onscreen. If you enable the hidesWhenStopped property,
VoiceOver might abruptly stop speaking when the animation finishes.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Activity Indicators
Using Auto Layout with Activity Indicators

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

29

Internationalizing Activity Indicators
Activity indicators have no special properties related to internationalization. However, if you use an activity
indicator with a label, make sure you provide localized strings for the label.

For more information, see Internationalization Programming Topics .

Debugging Activity Indicators
When debugging issues with activity indicators, watch for this common pitfall:

Specifying conflicting appearance settings. The color property takes precedence over any color set using
the activityIndicatorViewStyle property. However, if your style is set to Large White, your activity
indicator appears a larger size with whatever custom color you set. Make sure your indicator is set to a different
style option if you want to use the small indicator.

Elements Similar to an Activity Indicator
The following element provides similar functionality to an activity indicator:

Progress View. A class that represents a progress bar. Use this class instead of an activity indicator when your
task takes a determinate amount of time. For more information, see “Progress Views” (page 66).

Activity Indicators
Internationalizing Activity Indicators

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

30

Alert views display a concise and informative alert message to the user. Alert views convey important information
about an app or the device, interrupting the user and requiring them to stop what they’re doing to choose an
action or dismiss the alert. For example, iOS uses alerts to warn the user that battery power is running low, so
they can connect a power adapter before their work is interrupted. An alert view appears on top of app content,
and must be manually dismissed by the user before he can resume interaction with the app.

Purpose. Alert views allow users to:

 ● Be immediately informed of critical information

 ● Make a decision about a course of action

Implementation. Alert views are implemented in the UIAlertView class and discussed in the UIAlertView
Class Reference .

Configuration. Alert views are created, initialized, and configured in code, typically residing in a view controller
implementation file.

Content of Alert Views (Programmatic)
You cannot create or manipulate alert views in Interface Builder. Rather, an alert view floats over an existing
view to interrupt its presentation, and it requires the user to dismiss it. If an alert view contains a custom button
enabling the users to choose an alternative action, rather than simply dismissing the alert, that action is handled
by the alert view’s delegate.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

31

Alert Views

When setting alert view content, you can control the number of buttons, their titles, displayed text, and inclusion
of one or two text fields, one of which can be a secure text-input field.

When you create an alert view object from the UIAlertView class, you can initialize its most important
properties with one method,
initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:. Depending on your
app’s needs, that single message may be enough to configure a fully functional alert object, as shown in the
following code. After you have created the alert object, send it a show message to display the alert.

UIAlertView *theAlert = [[UIAlertView alloc] initWithTitle:@"Title"

message:@"This is the message."

delegate:self

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[theAlert show];

Every alert has a Cancel button so that the user can dismiss the alert. You can add additional, custom buttons
to enable the user to perform some other action related to the alert, such as rectifying the problem the alert
warned about. Although you can add multiple custom buttons to an alert, iOS Human Interface Guidelines
recommend that you limit alerts to two buttons, and consider using an action sheet instead if you need more.

To add a titled custom button to an alert, send it an addButtonWithTitle: message. Alternatively, you can
pass the custom button title, followed by a comma and nil terminator, with the otherButtonTitles:
parameter when you initialize the alert view object.

Optionally, an alert can contain one or two text fields, one of which can be a secure text-input field. You add
text fields to an alert after it is created by setting its alertViewStyle property to one of the styles specified
by the UIAlertViewStyle constants. The alert view styles can specify no text field (the default style), one
plain text field, one secure text field (which displays a bullet character as each character is typed), or two text
fields (one plain and one secure) to accommodate a login identifier and password.

Alert Views
Content of Alert Views (Programmatic)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

32

Behavior of Alert Views (Programmatic)
If your alert has a custom button, you must designate a delegate to handle the button’s action, and the delegate
must conform to the UIAlertViewDelegate protocol. You designate the delegate with the delegate
parameter when you initialize the alert view object. The delegate must implement the
alertView:clickedButtonAtIndex: message to respond when the custom button is tapped; otherwise,
your custom buttons do nothing. For example, the following code shows an implementation that simply logs
the title of the button that was tapped:

- (void)alertView:(UIAlertView *)theAlert clickedButtonAtIndex:(NSInteger)buttonIndex

{

NSLog(@"The %@ button was tapped.", [theAlert buttonTitleAtIndex:buttonIndex]);

}

In the delegate method alertView:clickedButtonAtIndex:, depending on which button the user tapped,
you can retrieve the values of text fields in your alert view with the textFieldAtIndex: method.

if (theAlert.alertViewStyle == UIAlertViewStyleLoginAndPasswordInput) {

NSLog(@"The login field says %@, and the password is %@.",

[theAlert textFieldAtIndex:0].text, [theAlert textFieldAtIndex:1].text);

}

The alert view is automatically dismissed after the alertView:clickedButtonAtIndex: delegate method
is invoked. Optionally, you can implement the alertViewCancel: method to take the appropriate action
when the system cancels your alert view. An alert view can be canceled at any time by the system—for example,
when the user taps the Home button. If the delegate does not implement the alertViewCancel: method,
the default behavior is to simulate the user clicking the cancel button and closing the view.

Appearance of Alert Views
You cannot customize the appearance of alert views.

Using Auto Layout with Alert Views
The layout of alert views is handled for you. You cannot create Auto Layout constraints between an alert view
and another user interface element.

Alert Views
Behavior of Alert Views (Programmatic)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

33

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Alert Views Accessible
Alert views are accessible by default.

Accessibility for alert views pertains to the alert title, alert message, and button titles. If VoiceOver is activated,
it speaks the word “alert” when an alert is shown, then speaks its title followed by its message if set. As the
user taps a button, VoiceOver speaks its title and the word “button.” As the user taps a text field, VoiceOver
speaks its value and “text field” or “secure text field.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Alert Views
To internationalize an alert view, you must provide localized translations of the alert title, message, and button
titles. Screen metrics and layout may change depending on the language and locale.

For more information, see Internationalization Programming Topics .

Debugging Alert Views
When debugging issues with alert views, watch for this common pitfall:

Not testing localizations. Be sure to test the alert views in your app with the localizations you intend to ship.
In particular, button titles can truncate if they are longer in localizations other than the one in which you
designed your user interface. Following the HI guideline to give buttons short, logical titles helps to ameliorate
this potential problem, but localization testing is also required.

Elements Similar to an Alert View
The following elements provide similar functionality to an alert view:

 ● Action Sheet. Present an action sheet when users tap a button in a toolbar, giving them choices related
to the action they’ve initiated. For more information, see “Action Sheets” (page 23).

Alert Views
Making Alert Views Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

34

 ● Modal View. Present a modal view (that is, the view controller uses a modal presentation style) when
users initiate a subtask in the context of their workflow or another task. For more information, see
UIViewController Class Reference .

Alert Views
Elements Similar to an Alert View

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

35

A collection view displays an ordered collection of data items using standard or custom layouts. Similar to a
table view, a collection view gets data from your custom data source objects and displays it using a combination
of cell, layout, and supplementary views. A collection view can display items in a grid or in a custom layout
that you design. Regardless of the layout style you choose, a collection view is best suited to display
nonhierarchical, ordered data items.

Purpose. Collection views allow users to:

 ● View a catalog of variably sized items, optionally sorted into multiple sections

 ● Add to, rearrange, and edit a collection of items

 ● Choose from a frequently changing display of items

Implementation.

 ● Collection views are implemented in the UICollectionView class and discussed in the UICollectionView
Class Reference .

 ● Collection view cells are implemented in the UICollectionViewCell class and discussed in the
UICollectionViewCell Class Reference .

 ● Collection reusable views are implemented in the UICollectionReusableView class and discussed in
the UICollectionReusableView Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

36

Collection Views

Configuration. Configure collection views in Interface Builder, in the Collection View section of the Attributes
Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Collection Views
Cells present the main content of your collection view. The job of a cell is to present the content for a single
item from your data source object. Each cell must be an instance of the UICollectionViewCell class, which
you may subclass as needed to present your content. Cell objects provide inherent support for managing their
own selection and highlight state, although some custom code must be written to actually apply a highlight
to a cell. A UICollectionViewCell object is a specific type of reusable view that you use for your main data
items.

To manage the visual presentation of data, a collection view works with many related classes, such as
UICollectionViewController, UICollectionViewDataSource, UICollectionViewDelegate,
UICollectionReusableView, UICollectionViewCell, UICollectionViewLayout, and
UICollectionViewLayoutAttributes.

Collection views enforce a strict separation between the data being presented and the visual elements used
for presentation. Your app is solely responsible for managing the data via your custom data source objects.
(To learn how to create these objects, see “Designing Your Data Objects” in Collection View Programming Guide
for iOS .) Your app also provides the view objects used to present that data. The collection view takes your
views and—with the help of a layout object, which specifies placement and other visual attributes—does all
the work of displaying them onscreen.

To display content onscreen in an efficient way, a collection view uses the following reusable view objects:

 ● Cell. Represents one data item.

Collection Views
Content of Collection Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

37

 ● Supplementary view. Represents information related to the data items, such as a section header or footer.

 ● Decoration view. Represents purely decorative content that’s not part of your data, such as a background
image.

Because a collection view works with these and other objects to determine the visual presentation of your
data, configuring a collection view in Interface Builder means that you need to configure some objects separately.

 ● Items. The number of different types of data for which you define distinct cell objects. If your app works
with only one type of data item—regardless of the total number of data items you display—set this value
to 1.

 ● Accessories. The existence of a header or footer view for each section (this property isn’t available for
custom layouts). Select Section Header or Section Footer as appropriate.

In Collection Reusable View Attributes inspector—which governs supplementary views, decoration views, and
cells—you can set the Identifier (identifier) field. Enter the ID you use in your code to identify the reusable cell,
decoration, or supplementary view object.

Behavior of Collection Views
There are several behaviors you can support in your collection view. For example, you might want to allow
users to:

 ● Select one or more items

 ● Insert, delete, and reorder items or sections

 ● Edit an item

By default, a collection view detects when the user taps a specific cell and it updates the cell’s selected or
highlighted properties as appropriate. You can write code that configures a collection view to support
multiple-item selection or that draws the selected or highlighted states yourself. To learn how to support
multiple selection or custom selection states, see “Managing the Visual State for Selections and Highlights” in
Collection View Programming Guide for iOS .

Collection Views
Behavior of Collection Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

38

To support insertion, deletion, or reordering of cells in a collection view, you make changes to your data source
and then tell the collection view to redisplay the content. By default, a collection view animates the insertion,
deletion, or movement of a single item; if you want to animate these changes for multiple items at once, you
use code blocks to batch the update. To learn how animate multiple changes to a collection view, see “Inserting,
Deleting, and Moving Sections and Items” in Collection View Programming Guide for iOS . To let users move an
item or items by dragging, you also need to incorporate a custom gesture recognizer. (To learn how to do this,
see “Manipulating Cells and Views” in Collection View Programming Guide for iOS .)

If you support editing for an item, the collection view automatically displays the Edit menu when it detects a
long-press gesture on a specific cell. To learn how to support editing in a collection view, see “Showing the
Edit Menu for a Cell” in Collection View Programming Guide for iOS .

When configuring cells and supplementary views in a storyboard, you do so by dragging the item onto your
collection view and configuring it there. This creates a relationship between the collection view and the
corresponding cell or view. For cells, drag a collection view cell from the object library and drop it onto your
collection view. Set the custom class and the collection reusable view identifier of your cell to appropriate
values.

Whether the user is selecting or deselecting a cell, the cell’s selected state is always the last thing to change.
Taps in a cell always result in changes to the cell’s highlighted state first. Only after the tap sequence ends and
any highlights applied during that sequence are removed, does the selected state of the cell change. When
designing your cells, you should make sure that the visual appearance of your highlights and selected state
do not conflict in unintended ways.

When the user performs a long-tap gesture on a cell, the collection view attempts to display an Edit menu for
that cell. The Edit menu can be used to cut, copy, and paste cells in the collection view.

If you’re working with the UICollectionViewFlowLayout class, you can use the Attributes inspector to set
the “Scroll Direction” (scrollDirection) field to Horizontal or Vertical. Note that this property isn’t
available for custom layouts.

Appearance of Collection Views

Layout
A collection view relies on a layout object to define the layout of its cells, supplementary views, and decoration
views.

Collection Views
Appearance of Collection Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

39

The Layout field determines the layout of the cells. The default value is Flow, which refers to the layout defined
by the UICollectionViewFlowLayout class. If you provide a custom layout class, choose Custom instead.

To learn more about creating a custom layout class, see Collection View Programming Guide for iOS .

Background
To use a custom background for a collection view, you can specify a view that's positioned underneath all of
the other content and sized automatically to fill the entire bounds of the collection view. You can set this value
using the backgroundView property. Because this background view doesn’t scroll with the collection view’s
content, it’s not an appropriate way to display a decorative background such as the appearance of wooden
shelves.

Cell Background
To use a custom background for a single collection view cell, you can specify a view that’s positioned behind
the cell’s content view and that fills the cell’s bounds. You can set this value using the backgroundView
property.

You can also specify a custom selected background by providing a view that’s displayed above the cell’s
background view—and behind the content view—when the user selects the cell. Set this value using the
selectedBackgroundView property.

Spacing
In the Collection View Flow Layout Size Inspector, you can set size values (in points) for the layout object to
use when laying out cells and supplementary views.

For spacing between cells you can set the following Min Spacing values:

 ● For Cells. The minimum space to maintain between cells on one line.

 ● For Lines. The minimum space to maintain between lines of cells.

Collection Views
Appearance of Collection Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

40

Cell Padding

To add padding around cells so that space appears above, below, or on either side of the cells in a section, use
the “Section Insets” fields in the Collection View Flow Layout Size Inspector. Specifying nonzero inset values
reduces the amount of space available for laying out cells, which lets you limit the number of cells that can
appear on one row or the number of rows that can appear in one section. The insets you can specify are:

 ● Top. The space to add between the bottom of the header view and the top of the first line of cells.

 ● Bottom. The space to add between the bottom last line of cells and the top of the footer

 ● Left. The space to add between the left edge of the cells and the left edge of the collection view.

 ● Right. The space to add between the right edge of the cells and the right edge of the collection view.

Using Auto Layout with Collection Views
You can create Auto Layout constraints between a collection view and other user interface elements. You can
create any type of constraint for a collection view besides a baseline constraint.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Collection Views Accessible
The data items in a collection view are accessible by default when they are represented by standard UIKit
objects, such as UILabel and UITextField.

When a collection view changes its onscreen layout, it posts the
UIAccessibilityLayoutChangedNotification notification.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Collection Views
For more information, see Internationalization Programming Topics .

Collection Views
Using Auto Layout with Collection Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

41

Elements Similar to a Collection View
The following elements provide similar functionality to a collection view:

 ● Table View. A scrolling view that displays data items in a single-column list. For more information, see
“Table Views” (page 89).

 ● Scroll View. A scrolling view that displays content without support for any specific layout or ordering
scheme. For more information, see “Scroll Views” (page 70).

Collection Views
Elements Similar to a Collection View

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

42

An image view displays an image or an animated sequence of images. An image view lets you efficiently draw
an image (such as a JPEG or PNG file) or an animated series of images onscreen, scaling the images automatically
to fit within the current size of the view. Image views can optionally display a different image or series of images
whenever the view is highlighted. Image views support the same file formats as the UIImage class—TIFF,
JPEG, PNG, Windows bitmap (bmp), Windows icon (ico), Windows cursor (cur), and X Window System bitmap
(xbm) formats.

Purpose. Image views allow users to:

 ● View images within an app

Implementation. Image views are implemented in the UIImageView class and discussed in the UIImageView
Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

43

Image Views

Configuration. Configure image views in Interface Builder, in the Image View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Image Views
Image views provide significant programmatic customization by modifying properties on the view objects and
properties on whatever image object you have loaded into the view.

If you are displaying a single image, most image views require minimal configuration beyond setting the image.
If you are displaying an animated series of images, you must also configure the animation settings.

When you first use an image view object to display a single image, you can select an image to display using
the Image (image) field in the Attributes Inspector. If you did not choose an image in the Attributes Inspector,
you must set the initial image by calling initWithImage: or by setting the image property to a UIImage
object that describes the image you want to display.

If you want to show a different image when the view is highlighted, you can specify this information in the
Highlighted (highlightedImage) field. Alternatively, either call initWithImage:highlightedImage:
when you initialize the image or set the highlightedImage property to the alternative image.

If you want your image view to display an animated sequence of images, you must do this programmatically.
Because you cannot specify an array of images in the Attributes Inspector, you must write some code to tell
the image view which images to use. To do this, set the animationImages property to an array of UIImage
objects in the order in which they should be shown. Optionally set the highlightedAnimationImages
property if you want to show a different animation while the view is highlighted.

Image Views
Content of Image Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

44

Important: All images associated with a UIImageView object should have the same scale value. If your
application uses images with different scales, they may render incorrectly.

Behavior of Image Views
Use the Highlighted (highlighted) checkbox to specify whether the view should show the standard or
highlighted image or image sequence.

You can change the image view’s state at any time.

If you are using an image sequence, you can instead configure the animation behavior programmatically:

 ● Set the animationDuration to the desired animation period (in seconds). By default, this property is
computed based on the number of images at 30 frames per second.

 ● Set the animationRepeatCount to limit the number of iterations through the set of images. By default,
this property has a value of zero, which means that the animation repeats forever.

You start the animation by calling startAnimating.

Appearance of Image Views
You cannot customize the appearance of an image view directly. However, you can determine how images
appear in the view by setting properties at the UIImage and UIView levels.

Content Mode
The view’s contentMode property specifies how the image should be scaled and aligned within the view. It
is recommended (but not required) that you use images that are all the same size. If the images are different
sizes, each will be adjusted to fit separately based on this mode.

Image Views
Behavior of Image Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

45

Images
The image’s capInsets, leftCapWidth, and topCapHeight properties specify the width and height of a
central portion of the image that should be scaled differently than the border areas (outside that central
portion). The top and bottom border areas are tiled horizontally. The left and right border areas are tiled
vertically. The corners are displayed as-is. Additionally, the image’s alignmentRectInsets property specifies
portions of the image to ignore for alignment purposes (such as shadow and glow effects).

You can create images for images views in a number of ways, including:

 ● Using the imageWithAlignmentRectInsets: method, which returns a derived image with nonzero
alignment insets.

 ● Using the resizableImageWithCapInsets: or resizableImageWithCapInsets:resizingMode:
methods, which return a derived static image with nonzero cap insets. The image’s resizingMode
property indicates whether the image should be scaled or tiled.

 ● Using the animatedResizableImageNamed:capInsets:duration: or
animatedResizableImageNamed:capInsets:resizingMode:duration: methods, which return
a derived animated image with nonzero cap insets.

These methods cannot be set after the image is created or loaded.

Transparency and Alpha Blending
Transparency of an image view is defined by properties of both the underlying image and the view as follows:

 ● If the view’s Opaque (opaque) flag is set, the image is alpha blended with the background color of the
view, and the view itself is opaque. The view’s Alpha (alpha) setting is ignored.

 ● If the view’s Opaque (opaque) flag is not set, the alpha channel for each pixel (or 1.0 if the image has no
alpha channel) is multiplied by the view’s Alpha (alpha) setting, and the resulting value determines the
transparency for that pixel.

Image Views
Appearance of Image Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

46

Important: It is computationally expensive to perform alpha compositing of non-opaque image views
containing images with alpha channels. If you are not intentionally using the image alpha channel or the
view’s Alpha setting, you should set the Opaque flag to improve performance. See the last bullet point of
“Debugging Image Views” (page 48) for more information.

Using Auto Layout with Image Views
You can create Auto Layout constraints between a image view and other user interface elements. You can
create any type of constraint for a image view besides a baseline constraint.

You generally want the image view to fill the full width of your screen. To ensure that this happens correctly
on all devices and orientations, you can create Leading Space to Superview and Trailing Space to Superview
constraints, and set both values equal to 0. This will ensure that the image view remains pinned to the edges
of the device screen.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Image Views Accessible
Image views are accessible by default. The default accessibility traits for a image view are Image and User
Interaction Enabled.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Image Views
Internationalization of image views is automatic if your view displays only static images loaded from your app
bundle. If you are loading images programmatically, you are at least partially responsible for loading the correct
image.

 ● For resources in your app bundle, you do this by specifying the name in the attributes inspector or by
calling the imageNamed: class method on UIImage to obtain the localized version of each image.

 ● For images that are not in your app bundle, your code must do the following:

1. Determine which image to load in a manner specific to your app, such as providing a localized string
that contains the URL.

Image Views
Using Auto Layout with Image Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

47

2. Load that image by passing the URL or data for the correct image to an appropriate UIImage class
method, such as imageWithData: or imageWithContentsOfFile:.

Tip: Screen metrics and layout may also change depending on the language and locale, particularly if the
internationalized versions of your images have different dimensions. Where possible, you should try to make
minimize dimension differences in internationalized versions of image resources.

For more information, see Internationalization Programming Topics .

Debugging Image Views
When debugging issues with image views, watch for these common pitfalls:

 ● Not loading your image with the correct method. If you are loading an image from your app bundle,
use imageNamed:. If you are loading an image from a file (with a full path or URL), use
imageWithContentsOfFile:.

 ● Not making animated image frames the same size. This helps you avoid having to deal with scaling,
tiling, or positioning differences between frames.

 ● Not using a consistent scale value for all animated image frames. Mixing images with different scale
factors may produce undefined behavior.

 ● Doing custom drawing in a subclass of an image view. The UIImageView class is optimized to draw its
images to the display. UIImageView does not call the drawRect:method of its subclasses. If your subclass
needs to include custom drawing code, you should subclass the UIView class instead.

 ● Not enabling event handling in subclasses if you need it. New image view objects are configured to
disregard user events by default. If you want to handle events in a custom subclass of UIImageView, you
must explicitly change the value of the userInteractionEnabled property to YES after initializing the
object.

 ● Not providing prescaled images where possible. For example, if you expect certain large images to be
frequently displayed in a scaled-down thumbnail view, you might consider keeping the scaled-down
images in a thumbnail cache. Scaling the image is a relatively expensive operation.

 ● Not limiting image size. Consider prescaling or tiling large images. The MVCNetworking sample code
project (QImageScrollView.m) demonstrates how to determine what model of iOS device your software
is running on. You can then use that information to help you determine the image dimension thresholds
to use when scaling or tiling.

Image Views
Debugging Image Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

48

 ● Not disabling alpha blending except where needed. Unless you are intentionally working with images
that contain transparency (drawing UI elements, for example), you should generally mark the view as
opaque by selecting the Opaque checkbox in the Attributes Inspector, or setting the opaque property on
the view itself.

For views that are not opaque, the device must perform a lot of unnecessary computation if alpha blending
is enabled and the image contains an alpha channel. This performance impact is further magnified if you
are using Core Animation shadows, because the shape of the shadow is then based on the contents of
the view, and must be dynamically computed.

To learn more about how alpha blending works, see “Transparency and Alpha Blending” (page 46).

Elements Similar to an Image View
The following elements provide similar functionality to a web view:

 ● Button. You can set the background image of a button control (of type UIButtonTypeCustom). For more
information, see “Buttons” (page 126).

 ● Scroll View. An image view typically scales content up or down to fit the dimensions of the view. If you
need to display an image with user-controlled zooming and scaling, you should place that image view
inside a scroll view. For more information, see “Scroll Views” (page 70).

 ● Custom Views. If you create a custom subclass of UIView, you can programmatically draw images inside
its drawRect: method. (For maximum performance, you should do this only when absolutely necessary.)
For more information, see “About Views” (page 16).

Image Views
Elements Similar to an Image View

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

49

A label displays static text. Labels are often used in conjunction with controls to describe their intended purpose,
such as explaining which value a button or slider affects.

Purpose. Labels allow the user to:

 ● Understand the purpose of controls in an app

 ● Receive instructions or context in an app

Implementation. Labels are implemented in the UILabel class and discussed in the UILabel Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

50

Labels

Configuration. Configure labels in Interface Builder, in the Label section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Labels

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

51

Content of Labels
Set label content using the Label Text (text and attributedText) field in the Attributes Inspector. Both
properties get set whether you specified the value of the Text field to be plain or attributed. For more information
about attributed text, see “Specifying Text Appearance” (page 53).

By default, a label is a single line. To create a multiline label, increase the value of the Lines (numberOfLines)
field.

Behavior of Labels
You can specify whether a label is enabled or highlighted using the Enabled (enabled) and Highlighted
(highlighted) checkboxes in the Attributes Inspector.

The Autoshrink (adjustsFontSizeToFitWidth) field is used to specify the manner in which font size will
be reduced with the label’s bounding rectangle.

The Fixed Font Size option is the equivalent of setting adjustsFontSizeToFitWidth to NO, meaning that
font size will not adjust. Select the Minimum Font Scale (minimumScaleFactor) option to specify the smallest
multiplier for the current font size that the font can scale down to, and the Minimum Font Size
(minimumFontSize) option to specify the smallest font size that the font can scale down to.

Labels
Content of Labels

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

52

Select the Tighten Letter Spacing (adjustsLetterSpacingToFitWidth) checkbox if you want the spacing
between letters to be adjusted to fit the string within the label’s bounding rectangle.

The Baselines (baselineAdjustment) field determines how to adjust the position of text in cases when the
text must be drawn using a different font size than the one originally specified. For example, with the Align
Baselines option, the position of the baseline remains fixed at its initial location while the text appears to move
toward that baseline. Similarly, selecting the None option makes it appear as if the text is moving upwards
toward the top-left corner of the bounding box.

Use the Line Breaks (lineBreakMode) field to specify the technique to use for wrapping and truncating the
label’s text if it exceeds a single line. Note that if this property is set to a value that causes text to wrap to
another line, do not set the adjustsFontSizeToFitWidth or adjustsLetterSpacingToFitWidth
property to YES.

Appearance of Labels
You can customize the appearance of a label by setting the properties depicted below.

To customize the appearance of all labels in your app, use the appearance proxy (for example, [UILabel
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Text Appearance
Labels can have one of two types of text: plain or attributed. Plain text supports a single set of formatting
attributes—font, size, color, and so on—for the entire string. On the other hand, attributed text supports
multiple sets of attributes that apply to individual characters or ranges of characters in the string.

Labels
Appearance of Labels

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

53

Highlighted Appearance
By default, the highlighted appearance of a label is no different than that of its normal control state.

However, you can create a different look for your label when it’s in the UIControlStateHighlighted state
by modifying its color in the Highlighted (highlightedTextColor) field.

Text Shadow
You can set a color for your label’s shadow using the Shadow (shadowColor) field in the Attributes Inspector.

If you want to change how far the shadow is drawn from the button text, you can adjust the shadow offset.
You can customize the offset for both dimensions using the Shadow Offset (shadowOffset) fields.

Using Auto Layout with Labels
You can create Auto Layout constraints between a label and other user interface elements. You can create any
type of constraint for a label.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Labels Accessible
Labels are accessible by default. The default accessibility trait for a label are Static Text and User Interaction
Enabled.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Labels
Using Auto Layout with Labels

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

54

Internationalizing Labels
For more information, see Internationalization Programming Topics .

Debugging Labels
When debugging issues with labels, watch for this common pitfall:

Specifying conflicting text wrapping and font adjustment settings. The lineBreakMode property describes
how text should wrap or truncate within the label. If you set a value for this property that causes text to wrap
to another line, do not set the adjustsFontSizeToFitWidth and adjustsLetterSpacingToFitWidth
properties to YES, those fields are used to scale the font size to fit into the label without adding line breaks.

Elements Similar to a Label
The following element provides similar functionality to a label:

Text Field. Text fields allows the user to input a single line of text into an app. You typically use text fields to
gather small amounts of text from the user and perform some immediate action, such as a search operation,
based on that text. For more information, see “Text Fields” (page 168).

Labels
Internationalizing Labels

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

55

Navigation bars allow you to present your app’s content in an organized and intuitive way. A navigation bar
is displayed at the top of the screen, and contains buttons for navigating through a hierarchy of screens. A
navigation bar generally has a back button, a title, and a right button. The most common way to use a navigation
bar is with a navigation controller. You can also use a navigation bar as a standalone object in your app.

Purpose. Navigation bars allow users to:

 ● Navigate to the previous view

 ● Transition to a new view

Implementation.

 ● Navigation bars are implemented in the UINavigationBar class and discussed in the UINavigationBar
Class Reference .

 ● Navigation items are implemented in the UINavigationItem class and discussed in theUINavigationItem
Class Reference .

 ● Bar button items are implemented in the UIBarButtonItem class and discussed in the UIBarButtonItem
Class Reference .

 ● Bar items are implemented in the UIBarItem class and discussed in the UIBarItem Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

56

Navigation Bars

Configuration. Configure navigation bars in Interface Builder, in the Navigation Bars section of the Attributes
Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Navigation Bars
After you create a navigation bar, either in conjunction with a navigation controller or as a standalone object,
you need to add content to the bar. A navigation bar can display a left button, title, prompt string, and right
button.

The navigation bar displays information from a stack of UINavigationItem objects. At any given time, the
UINavigationItem that is currently the topItem of the stack determines the title and other optional
information in the navigation bar, such as the right button and prompt. The UINavigationItem that is
immediately below the topItem is the backItem, which determines the appearance of the left or back button.

You can also add bar button items to a UINavigationItem. A UIBarButtonItem generally has a title and
either a custom image or one of the system-supplied images listed in UIBarButtonSystemItem. It’s common
to have a right bar button, but you can also use a left bar button in the place of a back button.

Navigation Bars
Content of Navigation Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

57

To add any of these elements to a navigation bar, select the desired item from the Object library in Interface
Builder and drag it to your storyboard. Then, you customize the contents in the Attributes Inspector as described
in “Images” (page 60).

For more information about the elements that you add to a navigation bar, seeUINavigationItemClass Reference
and UIBarButtonItem Class Reference .

Behavior of Navigation Bars
The most common way to use a navigation bar is with a UINavigationController object. A navigation
controller manages the navigation between different screens of content for you. It also creates the navigation
bar automatically, and pushes and pops navigation items as appropriate.

You can add a navigation controller to your app in Interface Builder or programmatically. To use Interface
Builder to create a navigation controller, see “Creating a Navigation Interface Using a Storyboard” in View
Controller Catalog for iOS . To create a navigation controller programmatically, see “Creating a Navigation
Interface Programmatically” in View Controller Catalog for iOS .

A navigation controller automatically assigns itself as the delegate of its navigation bar object. Attempting to
change the delegate raises an exception. For more information about using a navigation bar with navigation
controller, see “Navigation Controllers”.

When you use a navigation bar as a standalone object, you set the initial appearance of the navigation bar by
creating the appropriate UINavigationItem objects and adding them to the navigation bar object stack.
When you create your standalone navigation bar in Interface Builder, Xcode creates the corresponding
UINavigationItem objects for the elements you drag to the navigation bar.

You are also responsible for managing the stack of UINavigationItem objects when you use a navigation
bar as a standalone object. You push new navigation items onto the stack using the
pushNavigationItem:animated: method and pop items off the stack using the
popNavigationItemAnimated: method. In addition to pushing and popping items, you can also set the
contents of the stack directly using either the items property or the setItems:animated: method. You
might use these methods at launch time to restore your interface to its previous state or to push or pop more
than one navigation item at a time.

Assign a custom delegate object to the delegate property and use that object to intercept messages sent
by the navigation bar. Delegate objects must conform to the UINavigationBarDelegate protocol. The
delegate notifications let you track when navigation items are pushed or popped from the stack. You use these
notifications to update the rest of your app’s user interface. For more information about implementing a
delegate object, see UINavigationBarDelegate Protocol Reference .

Navigation Bars
Behavior of Navigation Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

58

Appearance of Navigation Bars
You can customize the appearance of a navigation bar by setting the properties depicted below.

To customize the appearance of all navigation bars in your app, use the appearance proxy (for example,
[UINavigationBar appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Bar Style
Navigation bars have two standard appearance styles: translucent white with dark text (default) or translucent
black with light text. Use the Style (barStyle) field to select one of these standard styles.

Tint Color
You can specify a custom tint color for the navigation bar background using the Tint (barTintColor) field.
The default background tint color is white.

Additionally, you can set a custom tint color for the interactive elements within a navigation bar—including
button images and titles—programmatically using the tintColor property. The navigation bar will inherit
its superview’s tint color if a custom one is set, or show the default system blue color if none is set. For more
information, see “Tint Color” (page 20).

Navigation Bars
Appearance of Navigation Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

59

Images
You can set a custom background image for your navigation bar. You can do this using
setBackgroundImage:forBarMetrics:. Note that you must specify bar metrics because navigation bars
have different dimensions on different devices and orientations.

You can also use a custom shadow image for the navigation bar using the shadowImage property. To show
a custom shadow image, you must also set a custom background image.

Translucency
Navigation bars are translucent by default in iOS 7. Additionally, there is a system blur applied to all navigation
bars. This allows your content to show through underneath the bar.

These settings automatically apply when you set any style for barStyle or any custom color for barTintColor.
If you prefer, you can make the navigation bar opaque by setting the translucent property to NO
programmatically. In this case, the bar draws an opaque background using black if the navigation bar has
UIBarStyleBlack style, white if the navigation bar has UIBarStyleDefault, or the navigation bar’s
barTintColor if a custom value is defined.

If the navigation bar has a custom background image, the default translucency is automatically inferred from
the average alpha values of the image. If the average alpha is less than 1.0, the navigation bar will be translucent
by default; if the average alpha is 1.0, the search bar will be opaque by default. If you set the translucent
property to YES on a navigation bar with an opaque custom background image, the navigation bar makes the
image translucent. If you set the translucent property to NO on a navigation bar with a translucent custom
background image, the navigation bar provides an opaque background for the image using black if the
navigation bar has UIBarStyleBlack style, white if the navigation bar has UIBarStyleDefault, or the
navigation bar’s barTintColor if a custom value is defined.

Title Attributes
The titleTextAttributes property specifies the attributes for displaying the bar’s title text. You can specify
the font, text color, text shadow color, and text shadow offset for the title in the text attributes dictionary,
using the text attribute keys described in NSString UIKit Additions Reference .

You can adjust the vertical position of a navigation bar’s title using the
setTitleVerticalPositionAdjustment:forBarMetrics: method. Note that you must specify bar
metrics because navigation bars have different dimensions for different devices and screen orientations.

Navigation Bars
Appearance of Navigation Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

60

Bar Button Item Icons
Any bar button in a navigation bar can have a custom image instead of text. You can provide this image to
your bar button item during initialization. Note that a bar button image will be automatically rendered as a
template image within a navigation bar, unless you explicitly set its rendering mode to
UIImageRenderingModeAlwaysOriginal. For more information, see “Template Images” (page 20).

Using Auto Layout with Navigation Bars
You can create Auto Layout constraints between a navigation bar and other user interface elements. You can
create any type of constraint for a navigation bar besides a baseline constraint.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Navigation Bars Accessible
Navigation bars are accessible by default. The default accessibility trait for a navigation bar is User Interaction
Enabled.

With VoiceOver enabled on an iOS device, after the user navigates to a new view in the hierarchy, VoiceOver
reads the navigation bar’s title, followed by the name of the left bar button item. When the user taps on an
element in a navigation bar, VoiceOver reads the name and the type of the element, such as, “General back
button,” “Keyboard heading,” and “Edit button.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Navigation Bars
For more information, see Internationalization Programming Topics .

Debugging Navigation Bars
When debugging issues with navigation bars, watch for this common pitfall:

Navigation Bars
Using Auto Layout with Navigation Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

61

Specifying conflicting appearance settings. When customizing navigation bar appearance with a style or
color, use one option or the other, but not both. Conflicting settings for navigation bar appearance will be
resolved in favor of the most recently set value. For example, setting a new style clears any custom tint color
you have set. Similarly, setting a custom tint color overrides any style you have set.

Elements Similar to a Navigation Bar
The following classes provide similar functionality to a navigation bar:

 ● Toolbar. A navigation controller can also manage a toolbar. On iPhone, this toolbar always appears at the
bottom edge of the screen, but on iPad a toolbar can appear at the top of the screen. You can create a
toolbar with a navigation controller, or as a standalone object. Unlike a navigation bar, which contains
controls for navigating through a hierarchy of screens, a toolbar contains controls that perform actions
related to the contents of the screen. For example, a toolbar might contain Share button and a Search
button. For more information about toolbars, see “Toolbars” (page 106).

 ● Tab Bar. Similar to a navigation bar, a tab bar allows the user to switch between different views. However,
a tab bar is persistent, which means that the user can select any tab from any other tab. By contrast, a
navigation bar presents a linear path through various screens. For more information about tab bars, see
“Tab Bars” (page 84).

Navigation Bars
Elements Similar to a Navigation Bar

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

62

A picker view lets the user choose between certain options by spinning a wheel on the screen. Picker views
are well suited for choosing things like dates and times (as the date picker does) that have a moderate number
of discrete options. Other examples include picking which armor to wear in a game and picking a font for text
in a word processor. The list of options should be ordered in some logical way to make scanning easier.

Purpose. Picker views allow users to:

 ● Quickly choose between a set of distinct options

Implementation. Picker views are implemented in the UIPickerView class and discussed in the UIPickerView
Class Reference .

Configuration. Configure picker views in Interface Builder, in the Picker View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Picker Views (Programmatic)
Populating a picker requires both a data source and a delegate. It is not possible to populate a picker in Interface
Builder; you must do this programmatically.

Picker views need a delegate to display data and appropriately handle user interaction. The delegate adopts
the UIPickerViewDelegate protocol and provides the content for each component’s row, either as an
attributed string, a plain string, or a view, and it typically responds to new selections or deselections. It also
implements methods to return the drawing rectangle for rows in each component—these optional methods
are only needed if the delegate returns a view as part of the picker’s content.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

63

Picker Views

Additionally, picker views require a data source. The data source adopts the UIPickerViewDataSource
protocol and implements the required methods to return the number of components (columns) and the
number of rows in each component. Note that the actual contents of each row comes from the delegate, not
the data source.

For information about delegates and data sources, see “Delegates and Data Sources”.

After setting the data source and delegate, set the initial selection by calling the
selectRow:inComponent:animated: without animation. Typically this is done in a the viewDidLoad
method of the view’s view controller.

If the picker is visible, use animation when you update the selection.

You can dynamically change the rows of a component by calling the reloadComponent: method, or
dynamically change the rows of all components by calling the reloadAllComponents method. When you
call either of these methods, the picker view asks the delegate for new component and row data, and asks the
data source for new component and row counts. Reload a picker view when a selected value in one component
should change the set of values in another component. For example, changing a row value from February to
March in one component should change a related component representing the days of the month.

Behavior of Picker Views
You cannot customize the picker view’s selection indicator on iOS 7. The selection indicator is always shown,
so toggling the Shows Selection Indicator (showsSelectionIndicator) box has no effect.

Appearance of Picker Views (Programmatic)
You cannot customize the appearance of picker views.

Using Auto Layout with Picker Views
You can create an Auto Layout constraint between a picker view and other user interface elements. You can
create any type of constraint for a picker view besides a baseline constraint.

Picker Views
Behavior of Picker Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

64

Picker views usually reside at the bottom of the screen in all device orientations. Select Bottom Space to
Superview and set the relation equal to 0 for the date picker to pin to the bottom of the screen in all device
orientations.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Picker Views Accessible
Picker views are accessible by default. The default accessibility trait for a picker view is Adjustable.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Picker Views
To internationalize picker view, you must provide localized translations of each string in the picker.

For more information, see Internationalization Programming Topics .

Debugging Picker Views
When debugging issues with picker views, watch for this common pitfall:

Not testing localizations. Be sure to test the pickers in your app with the localizations you intend to ship.

Elements Similar to a Picker View
The following elements provide similar functionality to a picker view:

 ● Date Picker. Uses a picker to let the user pick a date and time. For more information, see “Date
Pickers” (page 134).

 ● Stepper. Lets the user increment and decrement a value. For more information, see “Steppers” (page 159).

Picker Views
Making Picker Views Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

65

A progress view is used to illustrate the progress of a task over time in an app. You use a progress view to let
the user know how long until an operation completes, such as a download. The Mail app uses progress views
in several different situations, including when it’s downloading new messages or sending an outgoing message.

Purpose. Progress views allow users to:

 ● Receive feedback on a loading operation.

 ● See an estimate of how much time is left until a task finishes.

Implementation. Progress views are implemented in the UIProgressView class and discussed in the
UIProgressView Class Reference .

Configuration. Configure progress views in Interface Builder, in the Progress View section of the Attributes
Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

66

Progress Views

Content of Progress Views
You can set the initial progress as a float between 0 and 1 by using the Progress (progress) field in the
Attributes Inspector. You can also do this programmatically using the setProgress:animated: method
without animation. This is typically done in the viewDidLoad method of the view controller.

If the progress view is visible, use animation when you update the progress.

Behavior of Progress Views
You cannot configure the behavior of progress views.

Appearance of Progress Views
You can customize the appearance of a progress view by setting the properties depicted below.

To customize the appearance of all progress views in your app, use the appearance proxy (for example,
[UIProgressView appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Progress Views
Content of Progress Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

67

Style

With progress views, you have two style options: default and bar. You can specify either value by using the
Style (progressViewStyle) field. There is no difference in functionality, only in appearance. The Default
style has blue-tinted progress and a gray track; the Bar style is a thinner version of the default.

Tint Color
You can adjust the tint of two parts of the progress view: the track and the progress. The track tint applies to
the area of the track that is not filled, while the progress tint applies to the portion of the progress bar that is
filled. Use the Track Tint (trackTintColor) and Progress Tint (progressTintColor) fields to set custom
colors for the track and progress. You can adjust the tint for either style of the progress view.

Using Auto Layout with Progress Views
You can create Auto Layout constraints between a progress view and other user interface elements. You can
create any type of constraint for a progress view besides a baseline constraint.

To keep a progress view centered and adjust its width according to device orientation or screen size, you can
use Auto Layout to pin it to its superview. Using the Auto Layout Pin menu, create Leading Space to Superview
and Trailing Space to Superview constraints and set their values equal to each other. Doing this ensures that

Progress Views
Using Auto Layout with Progress Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

68

the endpoints of your progress view are a specified distance from the edges of its superview. With these
constraints, the progress view stays centered and its width adjusts automatically for different device orientations
and screen sizes.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Progress Views Accessible
Progress views are accessible by default. The default accessibility traits for a progress view are Updates Frequently
and User Interaction Enabled. The Updates Frequently accessibility trait means that the progress view doesn't
send update notifications when its state changes. This trait tells an assistive app that it should poll for changes
in the progress view when necessary.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Progress Views
Progress views have no special properties related to internationalization. However, if you use a progress view
with a label, make sure you provide localized strings for the label.

For more information, see Internationalization Programming Topics .

Elements Similar to a Progress View
The following element provides similar functionality to a progress view:

Activity Indicator View. For an indeterminate progress indicator—or, informally, a “spinner”—use an activity
indicator view. For more information, see “Activity Indicators” (page 27).

Progress Views
Making Progress Views Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

69

A scroll view allows users to see content that is larger than the scroll view’s boundaries. When a scroll view
first appears—or when users interact with it—vertical or horizontal scroll indicators flash briefly to show users
that there is more content they can reveal. Other than the transient scroll indicators, a scroll view has no
predefined appearance.

Purpose. Scroll views allow users to:

 ● View content that does not fit on the screen of the device

Implementation. Scroll views are implemented in the UIScrollView class and discussed in the UIScrollView
Class Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

70

Scroll Views

Configuration. Configure scroll views in Interface Builder, in the Scroll View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Scroll Views
Set scroll view content programmatically by adding subviews to its content view with the addSubview:
method.

Behavior of Scroll Views
Scroll views need a delegate to handle scrolling, dragging, and zooming. By assigning a view controller as the
scroll view’s delegate and implementing any or all of the UIScrollViewDelegate methods, you can define
these behaviors.

Scroll Views
Content of Scroll Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

71

A scroll view responds to the speed and direction of gestures to reveal content in a way that feels natural to
people. When users drag content in a scroll view, the content follows the touch; when users flick content, the
scroll view reveals the content quickly and stops scrolling when the user touches the screen or when the end
of the content is reached. A scroll view can also operate in paging mode, in which each drag or flick gesture
reveals one app-defined page of content.

Use the Shows Horizontal Scrollers (showsHorizontalScrollIndicator) and Shows Vertical Scrollers
(showsVerticalScrollIndicator) boxes to specify whether the corresponding scroll indicator should be
visible during tracking and fades out after tracking. These options are enabled by default; toggle off is you do
not want the scroller to be shown.

You can specify whether scrolling is enabled or disabled in the scroll view using the Scrolling Enabled
(scrollEnabled) checkbox. Scrolling is enabled by default. When scrolling is disabled, the scroll view does
not accept touch events; it forwards them up the responder chain.

If you check the Paging Enabled (pagingEnabled) box, the the scroll view stops on multiples of the scroll
view’s bounds when the user scrolls, giving the effect of scrolling through a single page at a time.

If you turn on directional lock by checking the Direction Lock Enabled (directionalLockEnabled) box, a
user will only be able to scroll in one direction at a time. By default, a user can scroll in both directions, or
diagonally.

If the Bounces Zoom (bouncesZoom) option is enabled, when zooming exceeds either the maximum or
minimum limits for scaling, the scroll view temporarily animates the content scaling just past these limits before
returning to them. If this option is disabled, zooming stops immediately at one a scaling limits.

Using the Delays Content Touches (delaysContentTouches) checkbox, you can specify whether the scroll
view delays the handling of touch-down gestures. When enabled, the view delays handling the touch-down
gesture until it can determine if scrolling is the intent.

Scroll Views
Behavior of Scroll Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

72

You can indicate whether touches in the content view always lead to tracking by using the Cancellable Content
Touches (canCancelContentTouches) checkbox. When enabled, if a user drags their finger enough to initiate
a scroll within a view in the content that has begun tracking a finger touching it, that view receives a
touchesCancelled:withEvent: message and the scroll view handles the touch as a scroll. When disabled,
the scroll view does not scroll regardless of finger movement once the content view starts tracking.

Use the Bounces (bounces) checkbox to indicate whether the scroll view bounces past the edge of content
and back again. Enable Bounce Horizontally (alwaysBounceHorizontal) if you want content to bounce
when scrolled horizontally, and Bounce Vertically (alwaysBounceVertical) if you want content to bounce
when scrolled vertically.

You can use the Min Zoom (minimumZoomScale) and Max Zoom (maximumZoomScale) fields to specify how
much the scroll view’s content can be zoomed. The maximum zoom scale must be greater than the minimum
zoom scale for zooming to be enabled. The default value is 1.0.

Scroll Views
Behavior of Scroll Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

73

Appearance of Scroll Views
You can customize the appearance of a scroll view by setting the properties depicted below.

To customize the appearance of all scroll views in your app, use the appearance proxy (for example,
[UIScrollView appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Style
The only way to customize the appearance of a scroll view is by setting the style of the scroll indicators. There
are three different choices for indicator style: default (black with a white border), white, or black. You can set
the indicator style using the “Style” (indicatorStyle) field in the Attributes Inspector.

Scroll Views
Appearance of Scroll Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

74

Content Layout
Scroll views have a number of options that dictate how their content is laid out. You specify the size of the
content using the contentSize property, which is initially set to zero. You can use the contentInset
property to specify a content inset, which is the distance that the content is padded or inset from the enclosing
scroll view. Additionally, you can use the contentOffset property or the setContentOffset:animated:
method to set the point at which the origin of the content view is offset from the origin of the scroll view.

Using Auto Layout with Scroll Views
You can create Auto Layout constraints between a scroll view and other user interface elements. You can create
any type of constraint for a scroll view besides a baseline constraint.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Scroll Views Accessible
Scroll views are accessible by default. The default accessibility trait for a scroll view is "User Interaction Enabled.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Scroll Views
For more information, see Internationalization Programming Topics .

Elements Similar to a Scroll View
The following elements provide similar functionality to a scroll view:

 ● Table View. A scrolling view that displays data items in a single-column list. For more information, see
“Table Views” (page 89).

 ● Collection View. A scrollable view that displays an ordered collection of data items using standard or
custom layouts. Similar to a table view, a collection view gets data from your custom data source objects
and displays it using a combination of cell, layout, and supplementary views. For more information, see
“Collection Views” (page 36).

Scroll Views
Using Auto Layout with Scroll Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

75

A search bar provides an interface for text-based searches with a text box and buttons such as search and
cancel. A search bar accepts text from users, which can be used as input for a search (shown here with
placeholder text). A scope bar, which is available only in conjunction with a search bar—allows users to define
the scope of a search (shown here below a search bar).

Purpose. Search bars allow users to:

 ● Quickly find a value in a large collection

 ● Create a scope filter

Implementation. Search bars are implemented in the UISearchBar class and discussed in the UISearchBar
Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

76

Search Bars

Configuration. Configure search bars in Interface Builder, in the Search Bar section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Search Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

77

Content of Search Bars
The Text (text) field contains the current search text; you can use it to set an initial search. Don’t use it to
provide a description of the search; use placeholder text instead. Placeholder text is specified in the Placeholder
(placeholder) field, and is visible only when there is no other text in the search field. Placeholder text is
styled differently to communicate its different meaning to the user and it is automatically cleared when the
user starts typing. It is suitable for very short descriptions of what the user should enter in the search field.

The prompt text is specified in the Prompt (prompt) field. It appears directly above the search bar. Unlike the
placeholder text, the prompt text is visible whether or not the user has entered text in the search field, so it is
suitable for longer descriptions or directions.

Search bars can display a number of different buttons. The Cancel button is intended to terminate a search
operation; you can display this button by selecting the Shows Cancel Button checkbox. The Search Results and
Bookmarks buttons appear in the right side of search bar, and can be toggled to display those respective views.
You can display one of these buttons by selecting either the Shows Search Results Button
(showsSearchResultsButton) or Shows Bookmarks Button (showsBookmarkButton) checkbox. Note that
you cannot display both of these buttons simultaneously; if both properties are enabled, only the Search Results
button is visible.

Note: These buttons are merely user interface elements and have no functionality. You must
implement the appropriate functionality yourself using the corresponding UISearchBarDelegate
methods.

Search Bars
Content of Search Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

78

A search bar can also display a scope bar, which lets users limit the scope of a search. For example, when
searching in an email app, the user could restrict the search to the Inbox or to a particular folder. To display a
scope bar, check the Shows Scope Bar (showsScopeBar) box and add an array of scope bar titles as strings
to the Scope Titles (scopeButtonTitles) field.

Behavior of Search Bars
Search bars need a delegate to handle user interaction. You implement the UISearchBarDelegate protocol
on a delegate object to respond to user actions—for example, performing the search. Every search bar needs
a delegate object that implements the UISearchBarDelegate protocol. The delegate is responsible for
taking actions in response to user input such as editing the search text, starting or canceling a search, and
tapping in the scope bar. At the very minimum, the delegate needs to perform a search after text is entered
in the text field.

A user types content into a search bar using a keyboard, which has a number of customization options:

 ● Keyboard layout. The Keyboard field allows you to select from a number of different keyboard layouts.
Match the keyboard layout to the purpose and scope of the search bar. The default keyboard layout is an
alphanumeric keyboard in the device’s default language. For a list of possible keyboard types, see
UIKeyboardType.

 ● Capitalization scheme. The Capitalization field specifies how text should be capitalized in the search bar:
no capitalization, every word, every sentence, or every character. The no capitalization scheme is selected
by default.

 ● Auto-correction. The Correction field simply disables or enables auto-correct in the search bar.

Search Bars
Behavior of Search Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

79

Appearance of Search Bars
You can customize the appearance of a search bar by setting the following properties:

To customize the appearance of all search bars in your app, the appearance proxy (for example, [UISearchBar
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Style
Bars have two standard appearance styles: translucent white with dark text (default) or translucent black with
light text. Use the Style (barStyle) field to select one of these standard styles.

Tint Color
You can specify a custom tint color for the search bar background using the Tint (barTintColor) field. The
default background tint color is white.

Additionally, you can set a custom tint color for the interactive elements within a search bar—including the
scope bar, cancel button, and cursor—programmatically using the tintColor property. The search bar will
inherit its superview’s tint color if a custom one is set, or show the default system blue color if none is set. For
more information, see “Tint Color” (page 20).

Search Bars
Appearance of Search Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

80

Background Images
A search bar can have a background image that covers the area behind the search field. Use the
backgroundImage property to set a background image for your search bar. You can also set the background
image for a search bar’s scope bar using the scopeBarBackgroundImage property. Single-pixel images or
stretchable images are stretched; otherwise, the image is tiled. If you set one of these background image
properties, you should also set the other to give your app interface a consistent look.

Translucency
Search bars are translucent by default on iOS 7. Additionally, there is a system blur applied to all search bars.
This allows your content to show through underneath the bar.

These settings automatically apply when you set any style for barStyle or any custom color for barTintColor.
If you prefer, you can make the search bar opaque by setting the translucentproperty to NOprogrammatically.
In this case, the bar draws an opaque background using black if the search bar has UIBarStyleBlack style,
white if the search bar has UIBarStyleDefault, or the search bar’s barTintColor if a custom value is
defined.

If the search bar has a custom background image, the default translucency is automatically inferred from the
average alpha values of the image. If the average alpha is less than 1.0, the search bar will be translucent by
default; if the average alpha is 1.0, the search bar will be opaque by default. If you set the translucent
property to YES on a search bar with an opaque custom background image, the search bar makes the image
translucent. If you set the translucent property to NO on a search bar with a translucent custom background
image, the search bar provides an opaque background for the image using black if the search bar has
UIBarStyleBlack style, white if the search bar has UIBarStyleDefault, or the search bar’s barTintColor
if a custom value is defined.

Layout
You can also control certain aspects of the search bar’s layout by providing position adjustments: for icons
using the positionAdjustmentForSearchBarIcon: method, for the background image using the
searchFieldBackgroundPositionAdjustment property, and for search text using the
searchTextPositionAdjustment property.

Using Auto Layout with Search Bars
You can create Auto Layout constraints between a search bar and other user interface elements. You can create
any type of constraint for a search bar besides a baseline constraint.

Search Bars
Using Auto Layout with Search Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

81

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Search Bars Accessible
Search bars are accessible by default.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Search Bars
To internationalize a search bar, you must provide localized strings for the following properties:

 ● placeholder

 ● prompt

 ● text

 ● scopeButtonTitles

For more information, see Internationalization Programming Topics .

Debugging Navigation Bars
When debugging issues with navigation bars, watch for these common pitfalls:

 ● Specifying conflicting appearance settings. When customizing search bar appearance with a style or
color, use one option or the other, but not both. Conflicting settings for search bar appearance will be
resolved in favor of the most recently set value. For example, setting a new style clears any custom tint
color you have set. Similarly, setting a custom tint color overrides any style you have set.

 ● Performance issues. If search operations can be carried out very rapidly, it is possible to update the search
results as the user is typing by implementing the searchBar:textDidChange:method on the delegate
object. However, if a search operation takes more time, you should wait until the user taps the Search
button before beginning the search in the searchBarSearchButtonClicked:method. Always perform
search operations a background thread to avoid blocking the main thread. This keeps your app responsive
to the user while the search is running and provides a better user experience.

Search Bars
Making Search Bars Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

82

Elements Similar to a Search Bar
The following element provides similar functionality to a search bar:

Toolbar. A toolbar object contains controls that allow the user to perform actions related to objects onscreen.
For more information, see “Toolbars” (page 106).

Search Bars
Elements Similar to a Search Bar

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

83

A tab bar provides easy access to different views in an app. Use a tab bar to organize information in your app
by subtask. The most common way to use a tab bar is with a tab bar controller. You can also use a tab bar as
a standalone object in your app.

Purpose. Tab bars allow the user to:

 ● Quickly navigate within an app

 ● Get an understanding of the app’s layout

Implementation.

 ● Tab bars are implemented in the UITabBar class and discussed in the UITabBar Class Reference .

 ● Tab bar items are implemented in the UITabBarItem class and discussed in the UITabBarItem Class
Reference .

Configuration. Configure tab bars in Interface Builder, in the Tab Bar section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Content of Tab Bars
Each tab on a tab bar is represented as a UITabBarItem, and you use the UITabBarItem class methods to
create a tab bar item. Each tab bar item has a title, selected image, unselected image, and a badge value.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

84

Tab Bars

After you create your tab bar items, add them to your tab bar with the items property, which is an array of
UITabBarItem objects. If you want to animate changes to your tab bar items array, use the
setItems:animated: method instead.

Behavior of Tab Bars (Programmatic)
You can change the contents of a tab bar at runtime, and allow users to add, remove, or reorder tabs. To present
a modal view that allows users to customize a tab bar, use the beginCustomizingItems: method. You can
also add a UITabBarDelegate object to your app. The tab bar delegate receives messages when the user
customizes the tab bar.

The most common way to use a tab bar is in conjunction with a tab bar controller. A UITabBarController
object manages the various tab views and view controllers, and the tab bar itself. If you use a tab bar controller,
you should not use the UITabBar methods or properties to modify the tab bar. If you do, the system throws
an exception. For more information about how to create a tab bar interface with an associated tab bar controller,
see “Tab Bar Controllers”.

Appearance of Tab Bars
You can customize the appearance of a tab bar by setting the properties depicted below.

To customize the appearance of all tab bars in your app, use the appearance proxy (for example, [UITabBar
appearance]). For more information, see “Appearance Proxies” (page 19).

Style
Tab bars have two standard appearance styles: translucent white with dark text (default) or translucent black
with light text. Use the barStyle property to programmatically select one of these standard styles.

Tint Color
You can specify a custom tint color for the bar background using the Tint (barTintColor) field. The default
background tint color is white.

Tab Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

85

Use the Image Tint (selectedImageTintColor) field to specify the bar item’s tint color when that tab is
selected. By default, that color is blue.

Images
The selection indicator image is shown when a tab is selected. It is drawn on top of the tab bar, behind the
bar item icon. By default, there is no selection indicator image, but you can set a custom one using the
selectionIndicatorImage property.

By default, there is no divider image between tabs on a tab bar. You can set custom divider images for each
combination of left and right tab control states using the setDividerImage:forLeftState:rightState:
method. If you use custom dividers, make sure to set divider images all combinations of tabs states: left selected,
right selected, or both unselected.

You can also set a custom background image for your entire tab bar using the backgroundImage property.
If you set this property with a stretchable image, the image is stretched. If you use a non-stretchable image,
the image is tiled.

If you want to use custom shadow image for the tab bar, set the shadowImage property. To show a custom
shadow image, you must also set a custom background image with backgroundImage.

Translucency
Tab bars are translucent by default on iOS 7. Additionally, there is a system blur applied to all tab bars. This
allows your content to show through underneath the bar.

These settings automatically apply when you set any style for barStyle or any custom color for barTintColor.
If you prefer, you can make the tab bar opaque by setting the translucent property to NO programmatically.
In this case, the bar draws an opaque background using black if the tab bar has UIBarStyleBlack style,
white if the tab bar has UIBarStyleDefault, or the tab bar’s barTintColor if a custom value is defined.

If the tab bar has a custom background image, the default translucency is automatically inferred from the
average alpha values of the image. If the average alpha is less than 1.0, the tab bar will be translucent by
default; if the average alpha is 1.0, the tab bar will be opaque by default. If you set the translucent property
to YES on a tab bar with an opaque custom background image, the tab bar makes the image translucent. If
you set the translucent property to NO on a tab bar with a translucent custom background image, the tab
bar provides an opaque background for the image using black if the tab bar has UIBarStyleBlack style,
white if the tab bar has UIBarStyleDefault, or the tab bar’s barTintColor if a custom value is defined.

Tab Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

86

Tab Bar Item Icons
Each item in a tab bar can have a custom selected image and unselected image. You can specify these images
when you initialize a tab bar item using the initWithTitle:image:selectedImage: method. Note that
a tab bar item image will be automatically rendered as a template image within a tab bar, unless you explicitly
set its rendering mode to UIImageRenderingModeAlwaysOriginal. For more information, see “Template
Images” (page 20).

Using Auto Layout with Tab Bars
You can create Auto Layout constraints between a tab bar and other user interface elements. You can create
any type of constraint for a tab bar besides a baseline constraint.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Tab Bars Accessible
Tab bars are accessible by default.

With VoiceOver enabled on an iOS device, when a user touches a tab in a tab bar, VoiceOver reads the title of
the tab, its position in the bar, and whether it is selected. For example in the iTunes app on iPad, you might
hear “Selected, Audiobooks, four of seven” or “Genius, six of seven.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Tab Bars
To internationalize a tab bar, you must provide localized strings for the tab bar item titles.

For more information, see Internationalization Programming Topics .

Elements Similar to a Tab Bar
The following classes provide similar functionality to a tab bar:

Tab Bars
Using Auto Layout with Tab Bars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

87

 ● Segmented Control. Similar to a tab bar, a segmented control functions as a button that shows different
views. If you want to provide functionality similar to a tab bar, but don’t want those controls to be persistent,
consider using a segmented control. Remember that a tab bar should be accessible from every location
in an app. For more information, see “Segmented Controls” (page 145).

 ● Navigation Bar. A navigation bar also allows users to navigate through different content views, but it
offers a linear path. With a tab bar, a user can view any other tab at any given time. For more information,
see “Navigation Bars” (page 56).

 ● Toolbar. Both a tab bar and a toolbar are always visible onscreen. However, unlike a tab bar, which switches
between views, a UIToolbar object contains controls that allow the user to perform actions related to
objects onscreen. For more information, see “Toolbars” (page 106).

Tab Bars
Elements Similar to a Tab Bar

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

88

A table view presents data in a scrollable list of multiple rows that may be divided into sections. It presents
data in a single-column list of multiple rows and is a means for displaying and editing hierarchical lists of
information. For instance, the Mail application uses a table view to display email messages in a user’s inbox.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

89

Table Views

In normal mode, selecting a message allows the user to read it. In editing mode, selecting a message allows
the user to delete it from the inbox. Table views provide a simple yet versatile interface for managing and
interacting with collections of data.

Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

90

Purpose. Table views allow users to:

 ● Navigate through hierarchically structured data

 ● View an indexed list of items

 ● See detail information and controls in visually distinct groupings

 ● Interact with a selectable list of options

Implementation.

 ● Table views are implemented in the UITableView class and discussed in UITableView Class Reference .

 ● Individual table cells are implemented in the UITableViewCell class and discussed in UITableViewCell
Class Reference .

 ● Table headers and footers are implemented in theUITableViewHeaderFooterView class and discussed
in UITableViewHeaderFooterView Class Reference .

Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

91

Configuration. Configure table views in Interface Builder, in the Table View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

92

Content of Table Views
To display content, a table view must have a data source. The data source mediates between the app’s data
model and the table view. A table view’s data source must conform to the UITableViewDataSource protocol.
For more information about the data source, see “Data Source and Delegate” in Table View Programming Guide
for iOS .

Each individual table cell can display a variety of content. Cells that use the default basic style can display an
image and text label, and cells that use one of the other three standard styles can display an image, text label,
and detail text label in a particular pre-defined layout. You can set a cell’s image programmatically using the
“Image” (image) field in the Attributes Inspector, which appears when the cell is in one of the four standard
styles. However, you must set the textLabel and detailTextLabel properties programmatically. To learn
more about table cell content, see “A Closer Look at Table View Cells”.

A cell’s content—image, text, and any custom views—resides in its content view. If you want to customize
your table cell beyond the standard cell styles, you can set the cell style to custom and add your custom views
to the cell’s contentView property programmatically.

Each table—and each section within that table—can have a header and a footer that displays text or custom
content. You use headers and footers to display additional information about the table or its sections. The
UITableViewHeaderFooterView class implements a reusable view that you can place at the top or bottom
of a table or table section.

Headers and footers can either display a text label and optional detail text label, or custom content. You can
set the textLabel and detailTextLabel properties programmatically. Alternatively, you can add your
custom views to the header or footer’s contentView property programmatically. If you are using any custom
content in a header or footer, do not use the standard textLabel and detailTextLabel properties; instead,
add your own labels to the content view. For more information about headers and footers, see “Grouped Table
Views” in Table View Programming Guide for iOS and UITableViewHeaderFooterView Class Reference .

Table Views
Content of Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

93

Behavior of Table Views
Table views need a delegate to manages the appearance and behavior. By assigning a view controller as the
table view’s delegate and implementing any or all of the UITableViewDelegate methods, you can allow
the delegate to manage selections, configure section headings and footers, help to delete and reorder cells,
and perform other actions.

Table selection style controls the number of cells a user can select at a given time. There are three types of
selection available for individual cells in a table view: single, multiple, or none. Tables can have different types
of selection in normal mode and editing mode. For example, you can allow users to select multiple items in
normal mode, but only delete one item at a time in editing mode. In Interface Builder, you can specify selection
style for normal mode using the Selection field, and for editing mode using the Editing field. You can also
choose whether a cell is visually highlighted upon selection by checking the Show Selection on Touch box.

Index Row Limit (sectionIndexMinimumDisplayRowCount) allows you to specify the minimum number
of rows required in the table for the index to be shown. Note that this applies to plain style tables only.

A reuse identifier is a string used to identify a cell that can be reused for multiple rows of a table view (for
performance purposes). You can set this property using the Identifier (reuseIdentifier) field in the Attributes
Inspector. You can also set a reuse identifier programmatically during cell initialization.

You can set indentation values for cell content through the Level (indentationLevel) and Width
(indentationWidth) fields. The width is the value for each level of indentation. You can indicate whether to
indent cell content in editing mode by checking the Indent While Editing (shouldIndentWhileEditing)
box.

Table Views
Behavior of Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

94

Checking the Shows Re-order Controls (showsReorderControl) box will cause the cell to display a control
that allows it to be reordered within the table in editing mode. However, you must also implement the
UITableViewDataSource method tableView:moveRowAtIndexPath:toIndexPath: and set
tableView:canMoveRowAtIndexPath: to return YES to get the reordering control to appear in a particular
cell. This part must be done programmatically.

To make the table view aware of a header or footer view, you need to register it. You do this using the
registerNib:forCellReuseIdentifier: or registerClass:forCellReuseIdentifier: method.
Similar to that of a table cell, the header or footer’s reuse identifier is a string used to identify a header or footer
view that can be reused for multiple headers or footers within a table. It is set during initialization using the
initWithReuseIdentifier: method.

Table Views
Behavior of Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

95

Appearance of Table Views
You can customize the appearance of a table view by setting the properties depicted below.

To customize the appearance of all table views in your app, use the appearance proxy (for example,
[UITableView appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Table Views
Appearance of Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

96

Style

Separator style dictates how a table’s cells are separated visually. You can customize the style and color of
table cell separators using the Separator (separatorStyle, separatorColor) fields in the Attributes
Inspector. There are three available styles: single line, etched line, or none.

Table style affects the appearance of a table’s sections. Tables have two styles: plain and grouped. Certain
appearance properties only apply when a table view is displayed in one particular style. You can select the
style of a table to be plain or grouped using the Style (style) attribute.

Cell Selection Style

Cell selection style specifies which color the outline of a selected cell will appear: gray, blue, or none. Use the
Selection (selectionStyle) field to set cell selection style.

Accessory Types

You can also set accessory types for normal and editing modes through the Accessory (accessoryType) and
Editing Acc. (editingAccessoryType) fields in the Attributes Inspector. For a list of standard accessory types,
see Cell Accessory Type.

Alternatively, you can use custom views by setting the accessoryView and editingAccessoryView
properties programmatically. Custom views have precedence over the standard accessory types, so if you set
the accessory view properties, your cell ignores the value of the accessoryType and editingAccessoryType
properties.

Cell Layout

Table Views
Appearance of Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

97

The cell style attribute determines how content is visually laid out in a cell. You can select one of four existing
styles—or create a custom one—in the Style field of a table cell’s Attributes Inspector.

Header and Footer Appearance
You can customize the appearance of your header or footer by setting a custom background view or tint color.
The background view is placed behind the contentView and used to display static background content
behind the header or footer. For example, you might assign an image view to this property and use it to display
a custom background image. Alternatively, you can set a custom tint for the header or footer view by setting
its tintColor property. Avoid setting both a custom background view and a custom tint.

Using Auto Layout with Table Views
You can create Auto Layout constraints between a table view and other user interface elements. You can create
any type of constraint for a table view besides a baseline constraint.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Table Views Accessible
Table views are accessible by default. Accessibility for tables is handled at the table cell level.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Table Views
To internationalize a table view, you must provide localized strings for text labels and detail text labels of all
table cells, headers, and footers.

For more information, see Internationalization Programming Topics .

Elements Similar to a Table View
The following element provides similar functionality to a table view:

Table Views
Using Auto Layout with Table Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

98

Scroll View. A class that provides support for displaying content that is larger than the size of the app’s window.
Use this class when your app contains too much information to display on an iOS device screen at one time.
For more information, see “Scroll Views” (page 70).

Table Views
Elements Similar to a Table View

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

99

A text view accepts and displays multiple lines of text. Text views support scrolling and text editing. You
typically use a text view to display a large amount of text, such as the body of an email message.

Purpose. Text views allow users to:

 ● Input user content into an app

Implementation. Text views are implemented in the UITextView class and discussed in the UITextView Class
Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

100

Text Views

Configuration. Configure text views in Interface Builder, in the Text View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Text Views
Set text view content using the Text (text and attributedText) field. Both properties get set whether you
specified the value of the field to be plain or attributed. Plain text supports a single set of formatting
attributes—font, size, color, and so on—for the entire string. On the other hand, attributed text supports
multiple sets of attributes that apply to individual characters or ranges of characters in the string.

Text Views
Content of Text Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

101

Behavior of Text Views

By default, users can add, remove, or change text within a text view. To disable these behaviors, uncheck the
Editable (editable) checkbox in the Attributes Inspector.

A text view is capable of recognizing when text is formatted as a link, address, phone number, or event. If you
enable the corresponding Detection (dataDetectorTypes) checkboxes, users will be able to trigger the
appropriate action for each type of text by clicking it in the text view. For example, they will be able to call a
phone number or add an event to their calendar.

A user types content into a text view using a keyboard, which has a number of customization options:

 ● Keyboard layout. The Keyboard field allows you to select from a number of different keyboard layouts.
Match the keyboard layout to the purpose of the text view. If the user will be entering a web address,
select the URL keyboard. The default keyboard layout is an alphanumeric keyboard in the device’s default
language. For a list of possible keyboard types, seeUIKeyboardType. You cannot customize the appearance
of the keyboard on iOS 7.

 ● Return key. You can select one of several standard Return key labels using the Return Key field. Different
Return key labels are intended to provide the user with an understanding of what action tapping the key
will trigger. Note that simply selecting a different Return key appearance does not provide you with the

Text Views
Behavior of Text Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

102

functionality intended by that key; you must implement the action yourself. Unlike text field delegates, a
text view delegate does not provide a method that gets called when the Return key is tapped. Rather,
tapping the Return key in a text view enters a return character into the text view’s text storage. However,
you can implement custom Return key functionality in the text view delegate’s
textView:shouldChangeTextInRange:replacementText: method, which gets called after every
keystroke.

The Auto-enable Return Key checkbox has no effect on text views.

 ● Capitalization scheme. The Capitalization field specifies how text should be capitalized in the text view:
no capitalization, every word, every sentence, or every character. The sentence capitalization scheme is
selected by default.

 ● Auto-correction. The Correction field simply disables or enables auto-correct in the text view.

 ● Secure content. The Secure checkbox has no effect on text views.

You can use the text view delegate methods to handle custom keyboard dismissal.

Appearance of Text Views
You can customize the appearance of a text view by setting the properties depicted below.

To customize the appearance of all text views in your app, use the appearance proxy (for example, [UITextView
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Text Appearance
Text views can have one of two types of text: plain or attributed. Plain text supports a single set of formatting
attributes—font, size, color, and so on—for the entire string. On the other hand, attributed text supports
multiple sets of attributes that apply to individual characters or ranges of characters in the string.

Text Views
Appearance of Text Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

103

Using Auto Layout with Text Views
You can create Auto Layout constraints between a text view and other user interface elements. You can create
any type of constraint for a text view besides a baseline constraint.

You generally want the text view to fill the full width of your screen. To ensure that this happens correctly on
all devices and orientations, you can create “Leading Space to Superview” and “Trailing Space to Superview”
constraints, and set both values equal to 0. This will ensure that the text view remains pinned to the edges of
the device screen.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Text Views Accessible
Text views are accessible by default. The default accessibility trait for a text view is User Interaction Enabled.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Text Views
For more information, see Internationalization Programming Topics .

Debugging Text Views
When debugging issues with text views, watch for this common pitfall:

Text Views
Using Auto Layout with Text Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

104

Placing a text view inside of a scroll view. Text views handle their own scrolling. You should not embed text
view objects in scroll views. If you do so, unexpected behavior can result because touch events for the two
objects can be mixed up and wrongly handled.

Elements Similar to a Text View
The following element provides similar functionality to a text view:

Scroll View. Use a scroll view for scrollable content. For more information, see “Scroll Views” (page 70).

Text Views
Elements Similar to a Text View

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

105

A toolbar usually appears at the bottom of a screen, and displays one or more buttons called toolbar items.
Generally, these buttons provide some sort of tool that is relevant to the screen’s current content. A toolbar
is often used in conjunction with a navigation controller, which manages both the navigation bar and the
toolbar.

Purpose. Toolbars allow users to:

 ● Select one of a set of performable actions within a given view

Implementation.

 ● Toolbars are implemented in the UIToolbar class and discussed in UIToolbar Class Reference .

 ● Bar button items are implemented in the UIBarButtonItem class and discussed inUIBarButtonItemClass
Reference .

 ● Bar items are implemented in the UIBarItem class and discussed in UIBarItem Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

106

Toolbars

Configuration. Configure toolbars in Interface Builder, in the Toolbar section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Content of Toolbars
After you create a toolbar, you need to add items to the bar. Each item is a UIBarButtonItem object, which
you can add to the toolbar directly in Interface Builder or in code using the items property. If you want to
animate changes to your toolbar items array, use the setItems:animated: method.

You can specify the content of a particular bar button item by selecting its identifier. The identifier can either
be custom or take on the value of well-know system buttons such as Edit or Done. For a list of system identifiers,
see UIBarButtonSystemItem.

Toolbars
Content of Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

107

If you are using a bar button item with the custom identifier, you can set some of its properties at the UIBarItem
level. For example, you can specify either a custom title or image using the Title (title) or Image (image)
fields.

You can assign a tag to your bar button item using the Tag (tag) field. This is intended to be a unique identifier
for your button so you can access it in code.

Behavior of Toolbars
Toolbars do not need a delegate to function properly; their parent view controller can define their behavior
without implementing any delegate protocols.

When a user clicks a particular button on the toolbar, you can respond by performing some corresponding
action in your app, such as deleting an email. You register the target-action method for a bar button item as
shown below.

self.myBarButtonItem.target = self;

self.myBarButtonItem.action = @selector(myAction:);

Alternatively, you can Control-drag the bar button item’s selector from the Connections Inspector to the action
method. For more information, see “Target-Action Mechanism” (page 121).

You can disable or enable a given button on the toolbar by selecting the button in Interface Builder and
toggling its Enabled (enabled) box.

Toolbars
Behavior of Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

108

A common way to create and manage a toolbar is in conjunction with a navigation controller. The navigation
controller displays the toolbar and populates it with items from the currently visible view controller. Using a
navigation controller is ideal for an app design where you want to change the contents of the toolbar
dynamically. However, you should not use a navigation controller if your app does not have or need a navigation
bar. For more information, see “Displaying a Navigation Toolbar” in View Controller Catalog for iOS .

Appearance of Toolbars
You can customize the appearance of a toolbar by setting the properties depicted below.

To customize the appearance of all toolbars in your app, use the appearance proxy (for example, [UIToolbar
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Style
Toolbar have two standard appearance styles: translucent white with dark text (default) or translucent black
with light text. Use the Style (barStyle) field to select one of these standard styles.

Toolbars
Appearance of Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

109

Tint Color
You can specify a custom tint color for the bar background using the Tint (barTintColor) field. The default
background tint color is white.

Additionally, you can set a custom tint color for the interactive elements within a toolbar bar—including the
button images and text—programmatically using the tintColor property. The toolbar bar will inherit its
superview’s tint color if a custom one is set, or show the default system blue color if none is set. For more
information, see “Tint Color” (page 20).

Background Images
You can set a custom background image for your toolbar using the
backgroundImageForToolbarPosition:barMetrics:method. The image must be the correct dimensions
in order to cover the area of the toolbar correctly. Remember to set custom images for different sets of bar
metrics.

If you want to use custom shadow image for the toolbar, use the setShadowImage:forToolbarPosition:
method. To show a custom shadow image, you must also set a custom background image with
backgroundImageForToolbarPosition:barMetrics:.

Translucency
Toolbars are translucent by default on iOS 7. Additionally, there is a system blur applied to all toolbars. This
allows your content to show through underneath the bar.

These settings automatically apply when you set any style for barStyle or any custom color for barTintColor.
If you prefer, you can make the toolbar opaque by setting the translucent property to NO programmatically.
In this case, the bar draws an opaque background using black if the toolbar has UIBarStyleBlack style,
white if the toolbar has UIBarStyleDefault, or the toolbar’s barTintColor if a custom value is defined.

If the toolbar has a custom background image, the default translucency is automatically inferred from the
average alpha values of the image. If the average alpha is less than 1.0, the toolbar will be translucent by
default; if the average alpha is 1.0, the toolbar will be opaque by default. If you set the translucent property
to YES on a toolbar with an opaque custom background image, the toolbar makes the image translucent. If

Toolbars
Appearance of Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

110

you set the translucent property to NO on a toolbar with a translucent custom background image, the
toolbar provides an opaque background for the image using black if the toolbar has UIBarStyleBlack style,
white if the toolbar has UIBarStyleDefault, or the toolbar’s barTintColor if a custom value is defined.

Bar Button Item Icons
Any bar button in a toolbar can have a custom image instead of text. You can provide this image to your bar
button item during initialization. Note that a bar button image will be automatically rendered as a template
image within a toolbar, unless you explicitly set its rendering mode to
UIImageRenderingModeAlwaysOriginal. For more information, see “Template Images” (page 20).

Using Auto Layout with Toolbars
You can create Auto Layout constraints between a toolbar and other user interface elements. You can create
any type of constraint for a toolbar besides a baseline constraint.

You cannot create Auto Layout constraints for individual bar button items. However, you can use bar button
items with the Fixed Space and Flexible Space identifiers to determine the spacing of buttons on your toolbar.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Toolbars Accessible
Toolbars are accessible by default.

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Toolbars
To internationalize a toolbar, you must provide localized strings for all button titles. Remember to test all
localizations, as button size may change unexpectedly when using localized strings.

For more information, see Internationalization Programming Topics .

Toolbars
Using Auto Layout with Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

111

Debugging Toolbars
When debugging issues with toolbars, watch for this common pitfall:

Trying to customize the content of a non-custom bar button item. If you try to set a custom title or image—at
the UIBarItem level—for a bar button item with a non-custom identifier, the bar button item’s identifier will
automatically switch to the custom type in Interface Builder.

Elements Similar to a Toolbar
The following elements provide similar functionality to a toolbar:

 ● Tab Bar. A toolbar is most similar to a tab bar—both can appear at the bottom of the screen. Use a toolbar
to display controls that perform specific functions, and use a tab bar to allow the user to switch between
different views or subtasks. For more information, see “Tab Bars” (page 84).

 ● Navigation Bar. For more information, see “Navigation Bars” (page 56).

Toolbars
Debugging Toolbars

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

112

A web view is a region that can display rich HTML content (shown here between the navigation bar and toolbar
in Mail on iPhone).

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

113

Web Views

Purpose. Web views allow users to:

 ● View web content within an app

Web Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

114

Implementation. Web views are implemented in the UIWebView class and discussed in the UIWebView Class
Reference .

Configuration. Configure web views in Interface Builder, in the Web View section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Web Views (Programmatic)
To get your web view to display content, you simply create a UIWebView object, attach it to a window, and
send it a request to load web content. Use the loadRequest: method to begin loading web content, the
stopLoading method to stop loading, and the loading property to find out if a web view is in the process
of loading. You can create the web view object in code or in Interface Builder, but you can load content in
code only.

[self.myWebView loadRequest:[NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.apple.com/"]]];

Behavior of Web Views
You can set your web view to automatically scale web content to fit on the screen of the user’s device. By
default, this behavior is disabled, but you can enable it by checking the Scales Page To Fit (scalesPageToFit)
box in Attributes Inspector. Enabling this property also allows the user to zoom in and out in the web view.

Web Views
Content of Web Views (Programmatic)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

115

A web view is capable of recognizing when web text is formatted as a link, address, phone number, or event.
If you enable the corresponding Detection (dataDetectorTypes) checkboxes, users will be able to trigger
the appropriate action for each type of text by clicking it in the web view. For example, they will be able to
call a phone number or add an event to their calendar.

Appearance of Web Views
You cannot customize the appearance of a web view.

Using Auto Layout with Web Views
You can create Auto Layout constraints between a web view and other user interface elements. You can create
any type of constraint for a web view besides a baseline constraint.

You generally want the web view to fill the full width of your screen. To ensure that this happens correctly on
all devices and orientations, you can create “Leading Space to Superview” and “Trailing Space to Superview”
constraints, and set both values equal to 0. This will ensure that the web view remains pinned to the edges of
the device screen.

For general information about using Auto Layout with iOS views, see “Using Auto Layout with Views” (page
21).

Making Web Views Accessible
Web views are accessible by default. The default accessibility trait for a web view is "User Interaction Enabled.”

For general information about making iOS views accessible, see “Making Views Accessible” (page 22).

Internationalizing Web Views
Web views have no special properties related to internationalization.

For more information, see Internationalization Programming Topics .

Web Views
Appearance of Web Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

116

Debugging Web Views
When debugging issues with web views, watch for these common pitfalls:

 ● Placing a web view inside of a scroll view. Web views handle their own scrolling. You should not embed
web view objects in scroll views. If you do so, unexpected behavior can result because touch events for
the two objects can be mixed up and wrongly handled.

 ● Not testing web content size. Web content comes in a variety of sizes, and it may be difficult to view
content that is too large or too small for a device screen. Enable the scalesPageToFit property to allow
users to zoom in or out if you anticipate that this might be the case for your app.

 ● Not having a valid Internet connection. Since web views rely entirely on the Internet, a working connection
is essential to loading web view content. Slow or disabled connections may make it appear as if your web
view is not functioning properly when the actual problem is with the connection.

Elements Similar to a Web View
The following element provides similar functionality to a web view:

Scroll View. Use a scroll view for scrollable content. For more information, see “Scroll Views” (page 70).

Web Views
Debugging Web Views

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

117

 ● “About Controls” (page 119)

 ● “Buttons” (page 126)

 ● “Date Pickers” (page 134)

 ● “Page Controls” (page 140)

 ● “Segmented Controls” (page 145)

 ● “Text Fields” (page 168)

 ● “Sliders” (page 152)

 ● “Steppers” (page 159)

 ● “Switches” (page 164)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

118

Controls

Important: This is a preliminary document for an API or technology in development. Although this document
has been reviewed for technical accuracy, it is not final. This Apple confidential information is for use only
by registered members of the applicable Apple Developer program. Apple is supplying this confidential
information to help you plan for the adoption of the technologies and programming interfaces described
herein. This information is subject to change, and software implemented according to this document should
be tested with final operating system software and final documentation. Newer versions of this document
may be provided with future seeds of the API or technology.

A control is a communication tool between a user and an app. Controls convey a particular action or intention
to the app through user interaction, and can be used to manipulate content, provide user input, navigate
within an app, or execute other pre-defined actions.

Controls are simple, straightforward, and familiar to users because the appear throughout many iOS apps. The
UIControl class is the base class for all controls on iOS, and defines the functionality that is common to all
controls. You should never use it directly; instead, use one of its subclasses. Each subclass of UIControl defines
appearance, behavior, and intended usage specific to that particular control. By using controls carefully and
consistently in your app, you can convey to users what they have the freedom and ability to do within the app.

Purpose. Controls allow users to:

 ● Interact with an app

 ● Manipulate or edit app content

 ● Convey user intent to the app in a straightforward way

Implementation. Controls are implemented in theUIControl class and discussed inUIControl Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

119

About Controls

Configuration. Configure controls in Interface Builder, in the Control section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Content of Controls
Each subclass of UIControl has different content or values that you can set. To learn about setting content
for a particular control, read its corresponding chapter:

 ● Buttons

 ● Date Pickers

 ● Page Controls

 ● Segmented Controls

 ● Text Fields

 ● Sliders

 ● Steppers

 ● Switches

Behavior of Controls

Control States
A control state describes the current interactive state of a control: normal, selected, enabled, or highlighted.
A control can have more than one state at a time, and you can change a control’s state at any point. For a full
listing of control states, see UIControlState.

About Controls
Content of Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

120

When a user interacts with a control, the control’s state changes appropriately. You can configure controls to
have different appearances for different states to provide users with feedback about which state the control
is in. For example, you might configure a button to display one image when it is in its normal state and a
different image when it is highlighted.

The fastest way to configure the initial state of a control is by using the Attributes Inspector:

When a control is enabled, a user can interact with it. When a control is disabled, it appears grayed out and
does not respond to user interaction. Controls are enabled by default; to disable a control, uncheck the “Enabled”
(enabled) box in the Attributes Inspector.

A control enters a temporary highlighted state when when a touch enters and exits during tracking and when
there is a touch up event. A highlighted state is temporary. You can customize the highlighted appearance of
some controls, such as buttons. Controls are not highlighted by default; to set a control’s initial state to
highlighted, check the “Highlighted” (highlighted) box in the Attributes Inspector.

When a user taps on a control, the control enters the selected state. For many controls, this state has no effect
on behavior or appearance. However, some subclasses may have different appearance depending on their
selected state. For example, UISegmentedControl segments have a distinctly different appearance when
selected. You can set a control to be selected using the “Selected” (selected) checkbox.

Control Events
A control event represents various physical gestures that users can make on controls, such as lifting a finger
from a control, dragging a finger into a control, and touching down within a text field. For a full listing of
control events, see UIControlEvents.

Target-Action Mechanism
The target-action mechanism is a model for configuring a control to send an action message to a target object
after a specific control event. For example, when a user interacts with a slider, it generates a
UIControlEventValueChanged control event. You could use this event to update a label’s text to the current
value of the slider. In this case, the sender is the slider, the control event is Value Changed, the action is updating
the label’s text, and the target is the controller file containing the label as an IBOutlet.

To create a relationship between the slider, the control event, the target, and the action, you can do one of
two things:

1. Call the addTarget:action:forControlEvents: method within your target file:

About Controls
Behavior of Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

121

[self.mySlider addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

2. Use the Connections Inspector in Interface Builder to Control-drag the slider’s Value Changed event to
the action method in the target file.

3. Control-click the slider in Interface Builder, and drag its Value Changed event to the target object in your
Storyboard. Select the appropriate action from the list of actions available for the target.

For more information, see “Target-Action in UIKit” in Concepts in Objective-C Programming .

Appearance of Controls

Content Alignment
Certain controls—such as buttons and text fields—can contain custom images or text. For these controls, you
can specify the alignment of that content by using the “Horizontal Alignment”
(contentHorizontalAlignment) and “Vertical Alignment” (contentVerticalAlignment) options in
Attributes Inspector. Using the horizontal alignment options, you can specify whether the content appears
aligned with the left, center, or right of the control, or whether it fills the width of the control. Using the vertical
alignment options, you can specify whether the content appears aligned with the top, center, or bottom of
the control, or whether it fills the height of the control. This is a great tool for ensuring your content appears
exactly where you want it to within your control (for example, centering text in a text field).

About Controls
Appearance of Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

122

Note: These alignment options apply to the content of a control, not the control itself. For information
about aligning controls with respect to other controls or views, see “Using Auto Layout with
Controls” (page 123).

Using Auto Layout with Controls
The auto layout system allows you to define layout constraints for user interface elements, such as views and
controls. Constraints represent relationships between user interface elements. You can create auto layout
constraints by selecting the appropriate element or group of elements and selecting an option from the menu
in the bottom right corner of Xcode’s Interface Builder.

Auto layout contains two menus of constraints: pin and align. The Pin menu allows you to specify constraints
that define some relationship based on a particular value or range of values. Some apply to the control itself
(width) while others define relationships between elements (horizontal spacing). The following tables describes
what each group of constraints in the auto layout menu accomplishes:

PurposeConstraint Name

Sets the width or height of a single element.

Sets the horizontal or vertical spacing between exactly two elements.

Sets the spacing from one or more elements to the leading, trailing, top,
or bottom of their container view. Leading and trailing are the same as
left and right in English, but the UI flips when localized in a right-to-left
environment.

Sets the widths or heights of two or more elements equal to each other.

Aligns the left, right, top, or bottom edges of two or more elements.

Aligns two or more elements according to their horizontal centers, vertical
centers, or bottom baselines. Note that baselines are different from bottom
edges. These values may not be defined for certain elements.

Aligns the horizontal or vertical centers of one or more elements with
the horizontal or vertical center of their container view.

About Controls
Using Auto Layout with Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

123

The “Constant” value specified for any Pin constraints (besides Widths/Heights Equally) can be part of a
“Relation.” That is, you can specify whether you want the value of that constraint to be equal to, less than or
equal to, or greater than or equal to the value.

For more information, see Auto Layout Guide .

Making Controls Accessible
Controls are accessible by default. To be useful, an accessible user interface element must provide accurate
and helpful information about its screen position, name, behavior, value, and type. This is the information
VoiceOver speaks to users. Visually impaired users can rely on VoiceOver to help them use their devices.

The iOS SDK contains a programming interface and tools that help you ensure that the user interface elements
in your application are both accessible and useful. The UI Accessibility programming interface defines the
following attributes:

 ● Label. A short, localized word or phrase that succinctly describes the control or view, but does not identify
the element’s type. Examples are “Add” or “Play.”

 ● Traits. A combination of one or more individual traits, each of which describes a single aspect of an
element’s state, behavior, or usage. For example, an element that behaves like a keyboard key and that
is currently selected can be characterized by the combination of the Keyboard Key and Selected traits.

 ● Hint. A brief, localized phrase that describes the results of an action on an element. Examples are “Adds
a title” or “Opens the shopping list.”

 ● Frame. The frame of the element in screen coordinates, which is given by the CGRect structure that
specifies an element’s screen location and size.

 ● Value. The current value of an element, when the value is not represented by the label. For example, the
label for a slider might be “Speed,” but its current value might be “50%.”

About Controls
Making Controls Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

124

Controls automatically provide value, frame, and default trait information. You can set a label, hint, and adjust
the list of traits using the Identity Inspector in Interface Builder.

For more information, see Accessibility Programming Guide for iOS .

About Controls
Making Controls Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

125

Buttons let a user initiate behavior with a tap. You communicate a button’s function through a textual label
or with an image. Your app changes button appearance based upon user touch interactions, using highlighting,
changes in the label or image, color, and state to indicate the button action dynamically.

Purpose. Buttons allow users to:

 ● Initiate behavior with a tap

 ● Initiate an action in the app with a single simple gesture

Implementation. Buttons are implemented in theUIButton class and discussed in theUIButton Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

126

Buttons

Configuration. Configure buttons in Interface Builder, in the Button section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

127

Content of Buttons
Set a button’s content using the Type (buttonType) field in the Attributes Inspector. In iOS 7, the rounded
rect button type has been deprecated in favor of the system button, UIButtonTypeSystem. Button objects
can be specified as one of five standard types—system, detail disclosure, info light, info dark, and add contact.
The detail disclosure, info, and add contact button types are supplied with standard image graphics to indicate
their purpose to the user. These images cannot be customized.

There is also a custom type for great versatility in defining a unique interface.

Behavior of Buttons
Buttons do not need a delegate to function properly; a view controller can define their behavior and functionality
without implementing any delegate protocols.

A button sends the UIControlEventTouchUpInside event when the user taps it. You can respond to this
event by performing some corresponding action in your app, such as saving information. You register the
target-action methods for a button as shown below.

[self.myButton addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the button’s Value Changed event from the Connections Inspector to the
action method. For more information, see “Target-Action Mechanism” (page 121).

If the Shows Touch On Highlight (showsTouchWhenHighlighted) box is enabled, when a user presses on
the button, there will be a white glow where the touch event occurred on the button.

Buttons
Content of Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

128

If your button has a custom image, the Highlighted Adjusts Image (adjustsImageWhenHighlighted) and
Disabled Adjusts Image (adjustsImageWhenDisabled) options allow you to specify whether highlighted
or disabled states affect the appearance of the image. For example, with those options enabled, the image
might get darker when the button is highlighted, and dimmer when the button is disabled.

If your button content extends past the bounds of the button, you can specify which part of the content to
truncate using the Line Break (lineBreakMode) field.

Appearance of Buttons
You can customize the appearance of a button by setting the properties depicted below.

To customize the appearance of all buttons in your app, use the appearance proxy (for example, [UIButton
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

State
A button has four states to configure for appearance—default, highlighted, selected, and disabled. To configure
the button’s appearance for each state, first select the state from the State Config menu in the Attributes
Inspector and then use the other menus and text boxes in the Attributes Inspector’s appearance property
group.

Buttons
Appearance of Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

129

Shadow
Shadow offset defines how far the shadow is drawn from the button text. You can customize the offset for
both dimensions using the Shadow Offset (titleShadowOffset) fields.

You can select the Reverses On Highlight (reversesTitleShadowWhenHighlighted) checkbox if you want
your shadow offset to automatically flip directions when the button is in the UIControlStateHighlighted
state.

Note: These shadow properties only have an effect on buttons with plain—not attributed—text.

Tint Color
You can specify a custom button tint using the tintColor property. This property sets the color of the button
image and text.

If you do not explicitly set a tint color, the button will inherit its superview’s tint color. For more information,
see “Tint Color” (page 20).

Buttons
Appearance of Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

130

Title Attributes
Button can have one of two types of text: plain or attributed. Plain text supports a single set of formatting
attributes—font, size, color, and so on—for the entire string. On the other hand, attributed text supports
multiple sets of attributes that apply to individual characters or ranges of characters in the string.

The default title is “Button”, intended to be altered to the app need. The title string set in the default state is
used in all other states unless you enter a replacement title string for a specific state. Available title customization
options differ depending on whether you are using plain or attributed text:

Images
Using the Image (currentImage) field, you can specify an image to appear within the content of your button.
If the button has a title, this image appears to the left of it, and centered otherwise. The image does not stretch
or condense, so make sure to select an image that is the proper size to appear in your button. Note that this
image will be automatically rendered as a template image within the button, unless you explicitly set its
rendering mode to UIImageRenderingModeAlwaysOriginal. For more information, see “Template
Images” (page 20).

The Background (currentBackgroundImage) field allows you to specify an image to appear behind button
content and fill the entire frame of the button. The image you specify will stretch to fill the button if it is too
small. It will be cropped if it is too large.

Buttons
Appearance of Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

131

The images set in the default state are used in all other states unless you enter a replacement image for a
specific state.

Edge Insets
The part of your button that makes up your image and text is your content. You can offset this content by
using edge insets. In the Edge field, select whether you want to offset just your title, just your image, or both
together. Depending on your selection, the changes you make to the Inset fields will adjust the
titleEdgeInsets, imageEdgeInsets, and contentEdgeInsets properties, respectively.

There should be no reason for you to adjust the edge insets for info, contact, or disclosure buttons. This
functionality is intended for custom or rounded rectangle buttons only.

Using Auto Layout with Buttons
You can create Auto Layout constraints between a button and other user interface elements. You can create
any type of constraint for a button.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Buttons Accessible
Buttons are accessible by default. The default accessibility traits for a button are Button and User Interaction
Enabled.

Buttons
Using Auto Layout with Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

132

The accessibility label, traits, and hint are spoken back to the user when VoiceOver is enabled on a device. The
button’s title overwrites its accessibility label; even if you set a custom value for the label, VoiceOver speaks
the value of the title. VoiceOver speaks this information when a user taps the button once. For example, when
a user taps the Options button in Camera, VoiceOver speaks the following:

"Options. Button. Shows additional camera options."

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Buttons
To internationalize a button, you must provide localized strings for its title text.

For more information, see Internationalization Programming Topics .

Elements Similar to a Button
The following element provides similar functionality to a button:

Bar Button. An icon used to execute an action from a toolbar or for navigation in a navigation bar. For more
information, see “Toolbars” (page 106).

Buttons
Internationalizing Buttons

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

133

A date picker is a control used for selecting a specific date, time, or both. It also provides an interface for a
countdown timer, although it does not implement the functionality. Date pickers provide a straightforward
interface for managing date and time selection, allowing users to specify a particular date quickly and efficiently.

Purpose. Date pickers allow users to:

 ● Specify a particular date and/or time

 ● Use a countdown timer interface

Implementation. Date pickers are implemented in the UIDatePicker class and discussed in the UIDatePicker
Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

134

Date Pickers

Configuration. Configure date pickers in Interface Builder, in the Date Picker section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

Content of Date Pickers
A date picker’s currently selected time displays at the center of the picker. This value defaults to the time the
picker object was created, but you can adjust this value using the Date (date) field in Attributes Inspector.
Use the Minimum Date (minimumDate) and Maximum Date (maximumDate) fields to constrain the date picker’s

Date Pickers
Content of Date Pickers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

135

range. For example, if you are asking the user to input a birthday, you might set the maximum date to the
current year. Creating a date scope that aligns with your picker’s intended functionality simplifies the user’s
task of finding and setting the correct date.

When a date picker is in the countdown mode, you can use the Timer (countDownDuration) field to specify
the seconds from which the countdown timer should count down. This value is ignored if the date picker is
not in UIDatePickerModeCountDownTimer mode. Note that even though the timer shows a countdown
in seconds, a user can only specify minute intervals to count down from.

Note: A date picker object presents the countdown timer but does not implement it; the application
must set up an NSTimer object and update the seconds as they’re counted down.

Behavior of Date Pickers
Date pickers do not need a delegate to function properly; their parent view controller can define their behavior
without implementing any delegate protocols.

Date Pickers
Behavior of Date Pickers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

136

A date picker sends the UIControlEventValueChanged event when the user finishes rotating one of the
wheels to change the date or time. You can respond to this event by performing some corresponding action
in your app, such as updating the time for a calendar event. You register the target-action methods for a date
picker as shown below.

[self.myDatePicker addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the date picker’s Value Changed event from the Connections Inspector to
the action method. For more information, see “Target-Action Mechanism” (page 121).

The most important setting in determining a date picker’s functionality is its mode. A date picker’s mode
determines what content it displays to the user, as well as how it behaves. There are four mode settings: date
and time, date only, time only, or countdown timer. The date and/or time modes allow users to select a specific
point in time. The countdown timer allows users to specify a relative time period until an event occurs. You
can specify one of these options using the Mode (datePickerMode) field in Attributes Inspector.

You can choose a specific locale for your date picker to appear in by adjusting the “Locale” (locale) field. For
more information, see “Internationalizing Date Pickers” (page 138).

You can also specify the interval at which the date picker displays minutes. A smaller interval gives users more
precise control over selecting a date picker time. Choose an interval in the Interval (minuteInterval) field.

Appearance of Date Pickers
You cannot customize the appearance of date pickers.

Date Pickers
Appearance of Date Pickers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

137

Using Auto Layout with Date Pickers
You can create Auto Layout constraints between a date picker and other user interface elements. You can
create any type of constraint for a date picker besides a baseline constraint.

Date pickers usually reside at the bottom of the screen in all device orientations. Select “Bottom Space to
Superview” and set the relation equal to 0 for the date picker to pin to the bottom of the screen in all device
orientations.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Date Pickers Accessible
Date pickers are accessible by default. Each rotating wheel in the date picker is its own accessibility element
and has the “Adjustable” (UIAccessibilityTraitAdjustable) trait.

The accessibility value, traits, and hint for each picker wheel are spoken back to the user when VoiceOver is
enabled on a device. VoiceOver speaks this information when a user taps on a picker wheel. For example, when
a user taps the hours column on the Add Alarm page (Clock > Alarm > Add), VoiceOver speaks the following:

"2 o'clock. Picker item. Adjustable. Swipe up or down with one finger to adjust
the value."

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Date Pickers
Date pickers handle their own internationalization; the only thing you need to do it specify the appropriate
locale. You can choose a specific locale for your date picker to appear in by setting the “Locale” (locale) field
in Attributes Inspector. This changes the language that the date picker is presented in, but also the format of
the date and time (for example, certain locales present days before month names, or prefer a 24-hour clock
over a 12-hour clock). The width of the date picker automatically accommodates for the length of the localization.
To use the system language, leave this property to default.

For more information, see Internationalization Programming Topics .

Date Pickers
Using Auto Layout with Date Pickers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

138

Debugging Date Pickers
When debugging issues with date pickers, watch for these common pitfalls:

 ● Specifying conflicting date bounds. Check the bounds of your minimumDate and maximumDate. If the
maximum date is less than the minimum date, both properties are ignored. The minimum and maximum
dates are also ignored in the countdown-timer mode (UIDatePickerModeCountDownTimer).

 ● Selecting an incorrect interval. Check that the minuteInterval can be evenly divided into 60; otherwise,
the default value is used (1).

Elements Similar to a Date Picker
The following element provides similar functionality to a date picker:

Picker View. A class like the date picker that can be used for selecting things other than date and time. For
more information, see “Picker Views” (page 63).

Date Pickers
Debugging Date Pickers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

139

A page control displays a horizontal series of dots, each of which represents a page or screen in an app. Although
a page control doesn’t manage the display of content pages, you can write code that lets users navigate
between pages by tapping the control. You can see examples of page controls in Weather—when you set
more than one location—and in the summary, chart, and news view in Stocks (in portrait orientation). Typically,
a page control is used with another view—such as a scroll view—that manages the pages and handles scrolling,
panning, and zooming of the content. In this scenario, the scroll view usually uses paging mode to display the
content, which is divided into separate views or into separate areas of one view.

Purpose. Page controls allow users to:

 ● Have a visual indication of which page is currently displayed

 ● Navigate between pages in an app

Implementation. Page controls are implemented in the UIPageControl class and discussed in the
UIPageControl Class Reference .

Configuration. Configure page controls in Interface Builder, in the Page Control section of the Attributes
Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

140

Page Controls

Content of Page Controls
To specify the number of dots the page control should display, you can use the the # of Pages (numberOfPages)
field in the Attributes Inspector. Note that when you create a page control in Interface Builder, the default
number of dots is 3; when you create a page control programmatically, the default number of dots is 0.

Use the Current (currentPage) field to specify the currently selected page. Note that page index begins at
0 instead of 1, so the maximum index of the currently selected page is one less than the total number of pages.

Behavior of Page Controls
Page controls need a delegate to handle user interaction. A page control doesn't automatically stay synchronized
with the currently open page—or let users tap the control to transition between pages—unless you enable
these actions in your app. To ensure that a page control's current-page dot corresponds to the page that is
currently open in the scroll view, implement the UIScrollViewDelegate protocol in your view controller.
Then, update the page control in the scrollViewDidScroll: delegate method and set the page control's
currentPage property to the current page.

A page control sends the UIControlEventValueChanged event when the user taps it. You can respond to
this event by performing some corresponding action in your app, such as transitioning to a different page in
the scroll view. You register the target-action methods for a page control as shown below.

[self.myPageControl addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the page control’s Value Changed event from the Connections Inspector
to the action method. For more information, see “Target-Action Mechanism” (page 121).

Page Controls
Content of Page Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

141

By default, a page control displays one dot when an app contains only one page. To set the page control to
display no dots when there is only one page, select the Hides for Single Page (hidesForSinglePage) checkbox
in the Attributes Inspector.

You can also choose to delay updating the page control’s display when the current page changes. If the Defers
Page Display (defersCurrentPageDisplay) box is enabled, when the user clicks the control to go to a new
page, the class defers updating the page control until it calls updateCurrentPageDisplay. This behavior is
off by default, which means the page indicator updates immediately.

Appearance of Page Controls
You can customize the appearance of a page control by setting the properties depicted below.

To customize the appearance of all page controls in your app, use the appearance proxy (for example,
[UIPageControl appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Tint Color
The only way to customize the appearance of a page control is by setting custom tints for the dots representing
each page. The Current Page (currentPageIndicatorTintColor) field affects the color of the dot
representing the currently displayed page, and the Tint Color (pageIndicatorTintColor) field affects the
color of the dots representing every other page. The default color is white for the current page dot, and
translucent gray for the other page dots.

Page Controls
Appearance of Page Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

142

If you want your custom colors to be translucent, you must specify a color with an alpha value of less than 1.0.
This must be done programmatically, as in the following example:

self.myPageControl.currentPageIndicatorTintColor = [UIColor colorWithRed:0.0
green:0.0 blue:1.0 alpha:0.5];

self.myPageControl.pageIndicatorTintColor = [UIColor colorWithRed:1.0 green:0.0
blue:0.0 alpha:0.5];

Using Auto Layout with Page Controls
You can create auto layout constraints between a page control and other user interface elements. You can
create any type of constraint for a page control besides a baseline constraint.

To keep a page control centered onscreen, you can use auto layout to pin a page control to its superview or
align it with other elements. Typically, you leave space for a page control at the bottom of the screen, below
the view that displays the pages.

For general information about using auto layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Page Controls Accessible
Page controls are accessible by default. The default accessibility traits for a page control are Updates Frequently
and User Interaction Enabled. The Updates Frequently accessibility trait means that the page control doesn't
send update notifications when its state changes. This trait tells an assistive app that it should poll for changes
in the page control when necessary.

When the user interacts with a page control, VoiceOver speaks "page x of y" where x is the current page and
y is the total number of pages.

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Page Controls
Page controls have no special properties related to internationalization.

For more information, see Internationalization Programming Topics .

Page Controls
Using Auto Layout with Page Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

143

Debugging Page Controls
When debugging issues with page controls, watch for this common pitfall:

Selecting an out of range current page. If you try to set a page control’s current page to be higher than the
index of the last page, it will be set equal to the index of the last page. If you try to set a page control’s current
page to be lower than 0, it will be set to 0.

Elements Similar to a Page Control
The following elements provide similar functionality to a page control:

 ● Scroll View. A class that supports a page-by-page scrolling experience in addition to panning and zooming
of content. For more information, see “Scroll Views” (page 70).

 ● Page View Controller. A class that displays multiple content views in a book-like format and enables
animated transitions between pages. For more information, see UIPageViewController Class Reference .

Page Controls
Debugging Page Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

144

A segmented control is a horizontal control made of multiple segments, each segment functioning as a discrete
button.

Purpose. Segmented controls allow users to:

 ● Interact with a compact group of a number of controls

Implementation. Segmented controls are implemented in the UISegmentedControl class and discussed in
the UISegmentedControl Class Reference .

Configuration. Configure segmented controls in Interface Builder, in the Segmented Control section of the
Attributes Inspector. A few configurations cannot be made through the Attributes Inspector, so you must make
them programmatically. You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

145

Segmented Controls

Content of Segmented Controls
Segmented controls are made up of a number of individual buttons called segments. You can choose the
number of segments by setting the Segments (numberOfSegments) field. By default, a segmented control is
created with two segments.

Content for each segment is set individually. Using the Segment field, you can select a particular segment to
modify its content. A segment may either have a text title or an image, but not both. Use the Title
(titleForSegmentAtIndex:) or Image (imageForSegmentAtIndex:) fields to set one of these content
properties. As stated in the HI guidelines, avoid creating a segmented control with some segments that contain
text and others that images; just choose one or the other.

Behavior of Segmented Controls
Segmented controls do not need a delegate to function properly; their parent view controller can define their
behavior without implementing any delegate protocols.

A segmented control sends the UIControlEventValueChanged event when the user presses one of the
segments. You can respond to this event by performing some corresponding action in your app, such as
switching to a different layout. You register the target-action methods for a segmented control as shown
below.

[self.mySegmentedControl addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Segmented Controls
Content of Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

146

Alternatively, you can Control-drag the segmented control’s Value Changed event from the Connections
Inspector to the action method. For more information, see “Target-Action Mechanism” (page 121).

If you set a segmented control to have a momentary selection style, its segments do not stay in a selected
state when pressed. Instead, they are momentarily highlighted and then restored back to the normal control
state. If you would like to enable this behavior, select the Momentary (momentary) checkbox in the Attributes
Inspector. Note that setting the momentary selection behavior affects every segment in a segmented control;
you cannot have a control with some momentary segments and some regular segments.

You can specify whether a given segment is enabled or disabled. A user cannot interact with a segment that
is disabled. Use the Enabled (isEnabledForSegmentAtIndex:) checkbox to specify whether a given segment
is enabled for user interaction. Additionally, you can specify whether a particular segment is currently selected
using the Selected (selectedSegmentIndex) checkbox. Note that only one segment can be selected at a
time; if you set the selection for a given segment, the previously selected segment will become unselected.

Segmented Controls
Behavior of Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

147

Appearance of Segmented Controls
You can customize the appearance of a segmented control by setting the properties depicted below.

To customize the appearance of all segmented controls in your app, use the appearance proxy (for example,
[UISegmentedControl appearance]). For more information about appearance proxies, see “Appearance
Proxies” (page 19).

Tint Color
Specify a custom segmented control tint using the Tint (tintColor) field. This property sets the color of the
segment images, text, dividers, borders, and selected segment. A translucent version of this color is also used
to tint a segment when it is pressed and transitioning to being selected, as shown on the first segment below.

If you do not explicitly set a tint color, the segmented control will inherit its superview’s tint color. For more
information, see “Tint Color” (page 20).

Segmented Controls
Appearance of Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

148

Style
You cannot customize the segmented control’s style on iOS 7. Segmented controls only have one style, and
the Style (segmentedControlStyle) field has been deprecated.

Content Offset
If you want the content of a particular segment to be offset from its default position, you can alter it using the
Content Offset fields in Attributes Inspector.

Images
If you need to customize the appearance of your segmented control beyond standard tinting, you might
consider doing so using custom images. Since segmented controls have different metrics for portrait and
landscape device orientations, remember to specify an appropriate image for each set of metrics.

You can set a background image for each control state of your segmented control using the
backgroundImageForState:barMetrics: method. You should also specify divider images for each
combination of left and right segment states to give selected or highlighted segments a different look than
segments in a normal state, as shown here:

[mySegmentedControl setDividerImage:image1 forLeftSegmentState:UIControlStateNormal
rightSegmentState:UIControlStateNormal barMetrics:barMetrics];

[mySegmentedControl setDividerImage:image2 forLeftSegmentState:UIControlStateSelected
rightSegmentState:UIControlStateNormal barMetrics:barMetrics];

[mySegmentedControl setDividerImage:image3 forLeftSegmentState:UIControlStateNormal
rightSegmentState:UIControlStateSelected barMetrics:barMetrics];

Title Attributes
The titleTextAttributesForState: property specifies the attributes for displaying the segment’s title
text. You can specify the font, text color, text shadow color, and text shadow offset for the title in the text
attributes dictionary, using the text attribute keys described in NSString UIKit Additions Reference .

Segmented Controls
Appearance of Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

149

Segment Icons
You can use an image instead of title text for your segments. Note that a segment image will be automatically
rendered as a template image within a segmented control, unless you explicitly set its rendering mode to
UIImageRenderingModeAlwaysOriginal. For more information, see “Template Images” (page 20).

Using Auto Layout with Segmented Controls
You can create auto layout constraints between a segmented control and other user interface elements. You
can create any type of constraint for a segmented control.

For general information about using auto layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Segmented Controls Accessible
The following listing demonstrates how you can set the accessibility label of programmatically-generated
segments.

NSString *title = @"∫";

title.accessibilityLabel = @"Integral";

[segmentedControl insertedSegmentedWithTitle:title];

UIImage *image = [UIImage imageNamed:@"GearImage.png"];

image.accessibilityLabel = @"Settings";

[segmentedControl insertedSegmentWithImage:image];

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Segmented Controls
To internationalize a segmented control, you must provide localized strings for all segment titles. Remember
to test all localizations, as segment size may change unexpectedly when using localized strings.

For more information, see Internationalization Programming Topics .

Segmented Controls
Using Auto Layout with Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

150

Debugging Segmented Controls
When debugging issues with segmented controls, watch for these common pitfalls:

 ● Specifying conflicting appearance settings. When customizing segment content with text or images,
use one or the other, but not both. A segment cannot have both text and an image as its content. Whichever
content property was set last will override the other one.

 ● Not setting custom images for every control state. If you use custom background and divider images
for your segmented control, remember to set an image for every possible UIControlState combination.
Any control state that does not have a corresponding custom image assigned to it will display the standard
image instead. If you set one custom image, make sure to set them all.

Elements Similar to a Segmented Control
The following elements provide similar functionality to a segmented control:

 ● Tab Bar. A class used for navigating between views in an app. You should use a tab bar instead of a
segmented control when you want to let the user move back and forth between distinct pages in your
app. For more information, see “Tab Bars” (page 84).

 ● Toolbar. A class that allows users to perform certain actions in the current context. For more information,
see “Toolbars” (page 106).

Segmented Controls
Debugging Segmented Controls

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

151

Sliders enable users to interactively modify some adjustable value in an app, such as speaker volume or screen
brightness. For example, in GarageBand, sliders allow users to mix different settings for various effects. Users
control a slider by moving its current value indicator along a continuous range of values between a specified
minimum and maximum.

Purpose. Sliders allow users to:

 ● Make smooth and continuous adjustments to a value

 ● Have relative control over a value within a range

 ● Set a value with a single simple gesture

Implementation. Sliders are implemented in the UISlider class and discussed in the UISlider Class Reference .

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

152

Sliders

Configuration. Configure sliders in Interface Builder, in the Slider section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

Content of Sliders
You can configure a minimum, maximum, and current value for your slider. By default, a slider’s minimum is
set to 0, its maximum is set to 1, and its current value is set to 0.5. You can change these values by adjusting
the Minimum (minimumValue), Maximum (maximumValue), and Current (value) fields in the Attributes
Inspector.

Behavior of Sliders
Sliders do not need a delegate to function properly; their parent view controller can define their behavior
without implementing any delegate protocols.

Sliders
Content of Sliders

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

153

A slider sends the UIControlEventValueChanged event when the user interacts it. You can respond to this
event by performing some corresponding action in your app, such as adjusting music volume. You register
the target-action methods for a slider as shown below.

[self.mySlider addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the slider’s Value Changed event from the Connections Inspector to the
action method. For more information, see “Target-Action Mechanism” (page 121).

You can specify when a slider’s UIControlEventValueChanged events are sent by toggling the Continuous
(continuous) checkbox in the Attributes Inspector. In continuous delivery, the slider sends multiple value
changed events as the user moves the thumb. In noncontinuous delivery, the slider sends one value changed
event when the user releases the thumb. Continuous control event delivery is enabled by default.

Appearance of Sliders
You can customize the appearance of a slider by setting the properties depicted below.

To customize the appearance of all sliders in your app, use the appearance proxy (for example, [UISlider
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Sliders
Appearance of Sliders

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

154

Minimum and Maximum Value Images
The most common way to customize the slider’s appearance is to provide custom minimum and maximum
value images. You can set a slider’s minimum and maximum value images in Interface Builder by selecting
custom images in the Min Image (minimumValueImage) and Max Image (maximumValueImage) fields in the
Attributes Inspector.

These images sit at either end of the slider control and indicate which value that end of the slider represents.
For example, a slider used to control volume might display a speaker with no sound waves emanating from it
for the minimum value and display a speaker with many sound waves emanating from it for the maximum
value, as illustrated here.

Tint Color
You can also set custom tints for each part of a slider. The minimum track image contains a blue highlight by
default, while the maximum track and thumb images contain a white highlight. You can assign different tints
for all of the standard parts provided by the slider. This can be done in the Attributes Inspector by setting the
Min Track Tint (minimumTrackTintColor), Max Track Tint (maximumTrackTintColor), and Thumb Tint
(thumbTintColor) fields.

Note that you can only adjust the tint of the default track and thumb images, not custom images. Setting the
tint of a part of the slider that has custom images associated with it will remove those images.

Track and Thumb Images (Programmatic)
Slider controls draw the track using two customizable images. The region between the thumb and the end of
the track associated with the slider’s minimum value is drawn using the minimum track image. The region
between the thumb and the end of the track associated with the slider’s maximum value is drawn using the
maximum track image. Different track images are used to provide context as to which end contains the minimum

Sliders
Appearance of Sliders

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

155

value. You can customize their appearance by assigning different pairs of track images to each UIControlState
of the slider. Assigning different images to each state lets you customize the appearance of the slider when it
is enabled, disabled, highlighted, and so on.

Use stretchable images for the slider’s track to create custom track images of any arbitrary width. You can
create a stretchable image by using the UIImage method resizableImageWithCapInsets:. Use this
method to add cap insets to an image or to change the existing cap insets of an image. During scaling or
resizing of the image, areas covered by a cap are not scaled or resized. Instead, the pixel area not covered by
the cap in each direction is tiled, left-to-right and top-to-bottom, to resize the image. For best performance,
use a single-pixel image.

You can also customize the appearance of the thumb. Like the track images, you can assign different thumb
images to each control state of the slider. To use a custom thumb image, add the image you wish to use to
your Xcode project, and use it to create a UIImage. Use this UIImage to programmatically set the thumb
image for your slider, as shown here. The same steps apply for the track images.

UIImage *thumbImage = [UIImage imageNamed:@"custom_thumb.png"];

[self.mySlider setThumbImage:thumbImage forState:UIControlStateNormal];

Track and thumb images can only be customized programmatically, as there is no process for accomplishing
this task in the Attributes Inspector.

Using Auto Layout with Sliders
You can create Auto Layout constraints between a slider and other user interface elements. You can create
any type of constraint for a slider besides a baseline constraint.

To keep a slider centered and adjust its width according to device orientation or screen size, you can use Auto
Layout to pin it to its superview. Using the Auto Layout “Pin” menu, create “Leading Space to Superview” and
“Trailing Space to Superview” constraints and set their values equal to each other. Doing this ensures that the
endpoints of your slider are a specified distance from the edges of its superview. With these constraints, the
slider stays centered and its width adjusts automatically for different device orientations and screen sizes.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Sliders
Using Auto Layout with Sliders

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

156

Making Sliders Accessible
Sliders are accessible by default. The default accessibility traits for a slider are User Interaction Enabled and
Adjustable.

When enabled on a device, VoiceOver speaks the accessibility label, value, traits, and hint are spoken back to
the user. VoiceOver speaks this information when a user swipes up and down (not left and right) over the
slider. For example, using the Ringer and Alerts volume slider (Settings > Sounds > Ringer and Alerts), VoiceOver
speaks the following:

"Sound volume: 13 percent. Adjustable. Swipe up or down with one finger to adjust
the value."

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Sliders
Sliders have no special properties related to internationalization. However, if you use a slider with a label, make
sure you provide localized strings for the label.

For more information, see Internationalization Programming Topics .

Debugging Sliders
When debugging issues with sliders, watch for these common pitfalls:

 ● Specifying conflicting appearance settings. When customizing slider appearance with images or tint,
use one option or the other, but not both. Conflicting settings for track and thumb appearance will be
resolved in favor of the most recently set value. For example, setting a new minimum track image for any
state clears any custom tint color you may have provided for minimum track images. Similarly, setting the
thumb tint color removes any custom thumb images associated with the slider.

 ● Selecting an out of range value. If you try to programmatically set a slider’s current value to be below
the minimum or above the maximum, it is set to the minimum or maximum instead. However, if you try
to do this using Interface Builder, the behavior is much different. For example, let's say your slider has a
minimum value of 0, a maximum value of 5, and the current value is set to 1. If you change the current
value to 999, the maximum value for the slider automatically changes to 999 because that value is higher
than the maximum value, so Interface Builder adjusts accordingly.

Sliders
Making Sliders Accessible

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

157

 ● Not setting custom images for every control state. If you use custom track and thumb images for your
slider, remember to set an image for every possible UIControlState. Any control state that does not
have a corresponding custom image assigned to it will display the standard image instead. If you set one
custom image, make sure to set them all.

Elements Similar to a Slider
The following elements provide similar functionality to a slider:

 ● Switch. A control that represents an on/off toggle button. You should use a switch instead of a slider when
you want to give users a choice between two opposing, discrete options instead of a range of values. For
more information, see “Switches” (page 164).

 ● Stepper. A control that uses a set of two buttons for incrementing or decrementing a value. You should
use a stepper instead of a slider when you want to give users very precise control over the value of an
element. For more information, see “Steppers” (page 159).

Sliders
Elements Similar to a Slider

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

158

A stepper lets the user adjust a value by increasing and decreasing it in small steps. Steppers are used in
situations where a user needs to adjust a value by a small amount.

Purpose. Steppers allow users to:

 ● Make discrete and incremental adjustments to a value

 ● Have precise control over a value within a range

Implementation. Steppers are implemented in the UIStepper class. For API reference, see UIStepper Class
Reference .

Configuration. Configure steppers in Interface Builder, in the Stepper section of the Attributes Inspector. A
few configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

159

Steppers

Content of Steppers
Configure a minimum, maximum, and current value for the stepper by setting these properties in Interface
Builder. By default, a stepper’s minimum is set to 0, its maximum is set to 100, and its current value is set to 0.
You can change these values by adjusting the Minimum (minimumValue), Maximum (maximumValue), and
Current (value) fields.

Steppers also allow you to specify step size, the amount by which the current value changes when the increase
or decrease buttons are pressed. The default step size is 1. The corresponding Attributes Inspector field is called
Step (stepValue).

Behavior of Steppers
Steppers do not need a delegate to function properly; their parent view controller can define their behavior
without implementing any delegate protocols.

A stepper sends the UIControlEventValueChanged event when the user interacts it. You can respond to
this event by performing some corresponding action in your app, such as adjusting music volume. You register
the target-action methods for a page control as shown below.

[self.myStepper addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the stepper’s Value Changed event from the Connections Inspector to the
action method. For more information, see “Target-Action Mechanism” (page 121).

You can specify when a stepper’sUIControlEventValueChanged events are sent by toggling the “Continuous”
(continuous) checkbox in the Attributes Inspector. In continuous delivery, the stepper sends multiple Value
Changed events while the user keeps pressing on the stepper. In noncontinuous delivery, the stepper sends
one Value Changed event when the user releases the stepper. Continuous control event delivery is enabled
by default.

Steppers
Content of Steppers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

160

A stepper defaults to autorepeat, which means that pressing and holding one of its buttons increments or
decrements the stepper’s value repeatedly. The rate of change depends on how long the user continues
pressing the control. The user can hold the stepper to quickly approach a desired value, and then increment
or decrement to the desired value. Uncheck the “Autorepeat” (autorepeat) box if you want the stepper to
be incremented or decremented one step at a time.

You can set a stepper to wrap around to the minimum value when you try to increment it past its
maximum—and vice versa. This functionality is disabled by default; to enable it, check the “Wrap” (wraps)
box.

Appearance of Steppers
You can customize the appearance of a stepper by setting the properties depicted below.

To customize the appearance of all steppers in your app, use the appearance proxy (for example, [UIStepper
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Tint Color (Programmatic)
You can specify a custom stepper tint by setting the tintColor property programmatically. This property
sets the color of the icons, divider, and border of the stepper. A translucent version of this color is also used
to tint a stepper button when it is pressed down, as shown on the increment button below.

Steppers
Appearance of Steppers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

161

If you do not explicitly set a tint color, the stepper will inherit its superview’s tint color. For more information,
see “Tint Color” (page 20).

Icons
The increment and decrement images are the icons that sit on top of each stepper button. They appear on
top of the background image. Use the setDecrementImage:forState: and
setIncrementImage:forState: methods to specify custom increment and decrement images for each
control state. Note that an increment or decrement image will be automatically rendered as a template image
within a toolbar, unless you explicitly set its rendering mode to UIImageRenderingModeAlwaysOriginal.
For more information, see “Template Images” (page 20).

Background and Divider Images
You can set custom images for each UIControlState of a stepper. For more information about control states,
see “Control States” (page 120).

A stepper can have a background image that covers the entirety of the control except for the divider, filling
the entire frame of the stepper. Use the backgroundImageForState: method to set a background image
for each control state of the stepper.

To strengthen the visual effect of a stepper button being pressed, you can set custom divider images for
different combinations of button states: increment button pressed, decrement button pressed, and neither
pressed. Note that it is impossible to press both buttons at the same time. Use the
setDividerImage:forLeftSegmentState:rightSegmentState: method to specify custom divider
images. Don’t forget to set an image for every state.

Using Auto Layout with Steppers
You can create Auto Layout constraints between a stepper and other user interface elements. You can create
any type of constraint for a stepper besides a baseline constraint.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Steppers Accessible
Steppers are accessible by default. The default accessibility traits for a stepper are User Interaction Enabled
and Adjustable.

Steppers
Using Auto Layout with Steppers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

162

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Internationalizing Steppers
Steppers have no special properties related to internationalization. However, if you use a stepper with a label,
make sure you provide localized strings for the label.

For more information, see Internationalization Programming Topics .

Elements Similar to a Stepper
The following elements provide similar functionality to a stepper:

 ● Slider. Use sliders to adjust a value continuously, rather than in discrete steps. Sliders are more appropriate
than steppers for setting a value that has a large range. For more information, see “Sliders” (page 152).

 ● Picker View. Use pickers to let the user select one of a list of options, rather than stepping through the
range of a value. A picker is more appropriate when selecting from a fixed set of options—for example,
choosing a month. For more information, see “Picker Views” (page 63).

Steppers
Internationalizing Steppers

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

163

A switch lets the user turn an option on and off. You see switches used throughout the Settings app to let a
user quickly toggle a specific setting.

Purpose. Switches allow users to:

 ● Choose between two mutually exclusive options

 ● Quickly toggle an option on and off

Implementation. Switches are implemented in the UISwitch class and discussed in the UISwitch Class
Reference .

Configuration. Configure switches in Interface Builder, in the Switch section of the Attributes Inspector. A few
configurations cannot be made through the Attributes Inspector, so you must make them programmatically.
You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

164

Switches

Content of Switches
Specify a switch’s state to indicate whether the switch is initially on or off. The default value is on. Use the State
(on) field in the Attributes Inspector to accomplish this task.

Behavior of Switches (Programmatic)
Switches do not need a delegate to function properly; their parent view controller can define their behavior
without implementing any delegate protocols.

A switch sends the UIControlEventValueChanged event when the user toggles it. You can respond to this
event by performing some corresponding action in your app, such as turning a setting on or off. You register
the target-action methods for a switch as shown below.

[mySwitch addTarget:self

action:@selector(myAction:)

forControlEvents:UIControlEventValueChanged];

Alternatively, you can Control-drag the switch’s Value Changed event from the Connections Inspector to the
action method. For more information, see “Target-Action Mechanism” (page 121).

Appearance of Switches
You can customize the appearance of a switch by setting the properties depicted below.

To customize the appearance of all switches in your app, use the appearance proxy (for example, [UISwitch
appearance]). For more information about appearance proxies, see “Appearance Proxies” (page 19).

Switches
Content of Switches

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

165

Tint Color
A switch’s on tint can be configured in the On Tint (onTintColor) field in Attributes Inspector. This is the
color you see when a switch is in the on position. The default on tint is green.

Thumb tint and off tint can only be configured programmatically. By default, the thumb tint is white and can
be set using the thumbTintColor property . You can also set a custom off tint using the tintColor property.
The off tint is light gray by default, but will inherit its superview’s tint color if a custom one is set. For more
information, see “Tint Color” (page 20).

self.mySwitch.thumbTintColor = [UIColor blueColor];

self.mySwitch.tintColor = [UIColor redColor];

Using Auto Layout with Switches
Switches need a label to tell the user what they are for. To label a switch, drag a label out of the elements
library. Make a bottom alignment constraint between their baselines, and a horizontal space constraint between
them of standard size.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Switches Accessible
Switches are accessible by default. A switch’s default accessibility traits are Button and User Interaction Enabled.

Switches are typically used in a table cell. When a table cell with a switch is tapped, VoiceOver speaks the cell
name, state of the switch, and hint are spoken back to the user. For example, when a user taps the Invert Colors
switch (Settings > General > Accessibility), VoiceOver speaks the following:

Invert Colors. Off. Double tap to toggle setting.

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Switches
Using Auto Layout with Switches

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

166

Internationalizing Switches
Switches have no special properties related to internationalization. However, if you use a switch with a label,
make sure you provide localized strings for the label.

For more information, see Internationalization Programming Topics .

Debugging Switches
When debugging issues with sliders, watch for these common pitfalls:

 ● Setting on/off images that are the wrong dimensions. A switch does not scale or stretch any custom
images that you add to it. For example, if you specify an on image that is smaller than the switch, you will
see the switch’s on tint color in the space that’s not covered by the image. On the other hand, if you specify
an on image that is too big, it can bleed over into the space intended for the off image. The size of on/off
images should be 77 points wide and 27 points tall.

 ● Specifying conflicting appearance settings. When customizing switch appearance with images or tint,
you can use one option or the other, but not both. Custom images appear on top of the tint layer. While
you may think you are adjusting the tint of the image itself, you’re simply setting the tint for a layer that
is not visible under the image.

Elements Similar to a Switch
The following element provides similar functionality to a switch:

Slider. A control that allows users to make adjustments to a value within a range of value. You should use a
slider instead of a switch when you want to let users select from a range of values instead of giving them a
choice between two opposing, discrete options. For more information, see “Sliders” (page 152).

Switches
Internationalizing Switches

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

167

Text fields allows the user to input a single line of text into an app. You typically use text fields to gather small
amounts of text from the user and perform some immediate action, such as a search operation, based on that
text.

Purpose. Text fields allow users to:

 ● Enter text as input to an app

Implementation. Text fields are implemented in the UITextField class and discussed in the UITextField Class
Reference .

Configuration. Configure text fields in Interface Builder, in the Text Field section of the Attributes Inspector.
A few configurations cannot be made through the Attributes Inspector, so you must make them
programmatically. You can set other configurations programmatically, too, if you prefer.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

168

Text Fields

Content of Text Fields
Set the content of the text field using the Text (text) field. You can select whether you want plain or attributed
text. The placeholder appears in place whenever a text field has no characters (before a user begins typing, or
if the user deletes everything in the text field).

Both placeholder and text can be attributed strings. For information about using attributed text, see “Text
Attributes” (page 171).

A user can use the Clear button to delete all text in the text field, and display the placeholder string if one is
set. You can specify when the Clear button is displayed to the user using the Clear Button (clearButtonMode)
field. Additionally, you can indicate whether the text field should automatically clear itself when the user begins
editing it by checking the Clear When Editing Begins (clearsOnBeginEditing) box.

Note: The Clear button only appears when there is text shown in the text field, not the placeholder.
Even if you select the “Is always visible” option, it will not appear when only placeholder text appears.

Behavior of Text Fields
Text fields need a delegate to handle any custom behaviors, such as displaying additional overlay views when
a user begins editing it. By assigning the parent view controller as the text field’s delegate and implementing
any or all of the UITextFieldDelegate methods, you can implement such custom behaviors.

A text field sends the UIControlEventEditingDidBegin, UIControlEventEditingChanged,
UIControlEventEditingDidEnd, and UIControlEventEditingDidEndOnExit events when the user
edits it. You can respond to these events by performing some corresponding action in your app, such as
updating information as the user types it. You register the target-action methods for a text field as shown
below.

[self.myTextField addTarget:self

action:@selector(myAction:)

Text Fields
Content of Text Fields

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

169

forControlEvents:UIControlEventEditingDidEnd];

Alternatively, you can Control-drag the text field’s Value Changed event from the Connections Inspector to
the action method. For more information, see “Target-Action Mechanism” (page 121).

A user types content into a text field using a keyboard, which has a number of customization options:

 ● Keyboard layout. The Keyboard field allows you to select from a number of different keyboard layouts.
Match the keyboard layout to the purpose of the text field. If the user will be entering a web address,
select the URL keyboard. The default keyboard layout is an alphanumeric keyboard in the device’s default
language. For a list of possible keyboard types, seeUIKeyboardType. You cannot customize the appearance
of the keyboard on iOS 7.

 ● Return key. The return key, which appears in the bottom right of the keyboard, allows the user to notify
the system when they are finished editing the text field. You can select one of several standard return key
types by using the Return Key field. The return key is disabled by default, and only becomes enabled when
a user types something into the text field. If you want your user to be able to press the return key any time
the keyboard is open, even if the input is empty or incomplete, you can enable the Auto-enable Return
Key option. Different return keys are intended to provide the user with an understanding of what action
hitting the key will trigger. Note that simply selecting a different return key appearance does not provide
you with the functionality intended by that key; you must implement custom return key behavior yourself
using the textFieldShouldReturn: method in your text field’s delegate.

 ● Capitalization scheme. The Capitalization field specifies how text should be capitalized in the text field:
no capitalization, every word, every sentence, or every character. Although no capitalization is selected
by default, you should select the capitalization scheme that reflects the intended use of your text field.
For example, if you ask for a user’s full name, you can configure the keyboard to capitalize every word so
the user does not have to do it manually.

 ● Auto-correction. The Correction field simply disables or enables auto-correct in the text field.

 ● Secure content. The Secure option is off by default. Enabling it causes the text field to obscure text once
it is typed, allowing the user to safely enter secure content—such as a password—into the field.

You can use the text field delegate methods to handle custom keyboard dismissal.

Text Fields
Behavior of Text Fields

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

170

Appearance of Text Fields
You can customize the appearance of a text field by setting the properties depicted below.

To customize the appearance of all text fields in your app, use the appearance proxy (for example,
[UITextField appearance]), or just of a single control. For more information about appearance proxies,
see “Appearance Proxies” (page 19).

Border Style

You can select one of the following border styles for your text field by selecting it next to the Border Style
(borderStyle) field:

Text Attributes
Text views can have one of two types of text: plain or attributed. Plain text supports a single set of formatting
attributes—font, size, color, and so on—for the entire string. On the other hand, attributed text supports
multiple sets of attributes that apply to individual characters or ranges of characters in the string.

Text Fields
Appearance of Text Fields

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

171

Font Size
By default, the Adjusts to Fit (adjustsFontSizeToFitWidth) box is selected in the Attributes Inspector.
When this option is enabled, the font size of your text label will automatically scale to fit inside the text field.
If you anticipate your text label to change—such as if the string is localized—you should keep this selected.
Setting a minimum font size ensures that your text will never appear smaller than intended. Use the Min Font
Size (minimumFontSize) field if you want to change the value from its default.

Images
A text field can have a background image that sits under the content of the text field. Use the Background
(background) field to set a background image for the normal state and the Disabled (disabledBackground)
field to set a background image for when the control is disabled.

Using Auto Layout with Text Fields
You can create Auto Layout constraints between a text field and other user interface elements. You can create
any type of constraint for a text field.

You will generally need to specify what a text field is intended for. You can use a label to do this. Place the
label to the left of the text field and give the label and text field a “Horizontal Spacing” constraint.

For general information about using Auto Layout with iOS controls, see “Using Auto Layout with Controls” (page
123).

Making Text Fields Accessible
Text fields are accessible by default. The default accessibility traits for a text field are User Interaction Enabled
and Adjustable.

For general information about making iOS controls accessible, see “Making Controls Accessible” (page 124).

Text Fields
Using Auto Layout with Text Fields

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

172

Internationalizing Text Fields
The default language of the device affects the keyboard that pops up with the text field (including the return
key). You don’t need to do anything to enable this functionality; it is enabled by default. However, your text
field should be able to handle input that comes from any language.

For more information, see Internationalization Programming Topics .

Elements Similar to a Text Field
The following elements provide similar functionality to a text field:

 ● Text View. A text view accepts and displays multiple lines of text. Text views support scrolling and text
editing. You typically use a text view to display a large amount of text, such as the body of an email
message. For more information, see “Text Views” (page 100).

 ● Label. A label displays static text. Labels are often used in conjunction with controls to describe their
intended purpose, such as explaining which value a button or slider affects. For more information, see
“Labels” (page 50).

Text Fields
Internationalizing Text Fields

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

173

 ● “Activity Indicator View” (page 176)

 ● “Bar Button Item” (page 178)

 ● “Bar Item” (page 181)

 ● “Button” (page 182)

 ● “Collection Reusable View” (page 190)

 ● “Collection View” (page 191)

 ● “Collection View Cell” (page 193)

 ● “Control” (page 194)

 ● “Date Picker” (page 197)

 ● “Image View” (page 200)

 ● “Label” (page 202)

 ● “Navigation Bar” (page 208)

 ● “Navigation Item” (page 209)

 ● “Page Control” (page 210)

 ● “Picker View” (page 212)

 ● “Progress View” (page 213)

 ● “Scroll View” (page 214)

 ● “Search Bar” (page 220)

 ● “Segmented Control” (page 225)

 ● “Slider” (page 229)

 ● “Stepper” (page 232)

 ● “Switch” (page 234)

 ● “Tab Bar” (page 235)

 ● “Tab Bar Item” (page 236)

 ● “Table View” (page 238)

 ● “Table View Cell” (page 241)

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

174

Attributes Inspector Reference

 ● “Text View” (page 245)

 ● “Toolbar” (page 253)

 ● “View” (page 254)

 ● “Web View” (page 259)

Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

175

Important: This is a preliminary document for an API or technology in development. Although this document
has been reviewed for technical accuracy, it is not final. This Apple confidential information is for use only
by registered members of the applicable Apple Developer program. Apple is supplying this confidential
information to help you plan for the adoption of the technologies and programming interfaces described
herein. This information is subject to change, and software implemented according to this document should
be tested with final operating system software and final documentation. Newer versions of this document
may be provided with future seeds of the API or technology.

Activity Indicator View Attributes Inspector Reference

Appearance and Behavior
Style

The basic appearance of the activity indicator.

ArgumentMethodSelection

UIActivityIndicator-
ViewStyleWhiteLarge

activityIndicatorViewStyleLarge White

UIActivityIndicatorViewStyleWhiteactivityIndicatorViewStyleWhite

UIActivityIndicatorViewStyleGrayactivityIndicatorViewStyleGray

Color

The color of the activity indicator.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

176

Activity Indicator View

Access: color

Behavior
Animating

Whether the activity indicator is moving.

Access: isAnimating

MethodSelection

stopAnimatingUnselected

startAnimatingSelected

Hides When Stopped

Whether the activity indicator is not shown when it is not animating.

ArgumentMethodSelection

NOhidesWhenStoppedUnselected

YEShidesWhenStoppedSelected

Activity Indicator View
Activity Indicator View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

177

Bar Button Item Attributes Inspector Reference

uibarbuttonitem_attributes_inspector.eps
UIBarButtonItem_Attributes_Inspector_Reference
Apple, Inc.
uibarbuttonitem_attributes_inspector.png @

Appearance
Style

The bar button item style.

ArgumentMethodSelection

UIBarButtonItemStylePlainstylePlain

UIBarButtonItemStyleBorderedstyleBordered

UIBarButtonItemStyleDonestyleDone

Identifier

The button type of the bar button item.

To specify a custom button, use initWithTitle:image:tag: or image.

ArgumentMethodSelection

Custom

UIBarButtonSystem-
ItemFlexibleSpace

initWithBarButtonSystemItem:
target:action:

Flexible
Space

UIBarButtonSystem-
ItemFixedSpace

initWithBarButtonSystemItem:
target:action:

Fixed Space

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

178

Bar Button Item

ArgumentMethodSelection

UIBarButtonSystemItemAddinitWithBarButtonSystemItem:
target:action:

Add

UIBarButtonSystemItemEditinitWithBarButtonSystemItem:
target:action:

Edit

UIBarButtonSystemItemDoneinitWithBarButtonSystemItem:
target:action:

Done

UIBarButtonSystemItemCancelinitWithBarButtonSystemItem:
target:action:

Cancel

UIBarButtonSystemItemSaveinitWithBarButtonSystemItem:
target:action:

Save

UIBarButtonSystemItemUndoinitWithBarButtonSystemItem:
target:action:

Undo

UIBarButtonSystemItemRedoinitWithBarButtonSystemItem:
target:action:

Redo

UIBarButtonSystem-
ItemCompose

initWithBarButtonSystemItem:
target:action:

Compose

UIBarButtonSystemItemReplyinitWithBarButtonSystemItem:
target:action:

Reply

UIBarButtonSystemItemActioninitWithBarButtonSystemItem:
target:action:

Action

UIBarButtonSystem-
ItemOrganize

initWithBarButtonSystemItem:
target:action:

Organize

UIBarButtonSystemItemTrashinitWithBarButtonSystemItem:
target:action:

Trash

UIBarButtonSystem-
ItemBookmarks

initWithBarButtonSystemItem:
target:action:

Bookmarks

UIBarButtonSystemItemSearchinitWithBarButtonSystemItem:
target:action:

Search

UIBarButtonSystem-
ItemFlexibleSpace

initWithBarButtonSystemItem:
target:action:

Refresh

Bar Button Item
Bar Button Item Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

179

ArgumentMethodSelection

UIBarButtonSystemItemStopinitWithBarButtonSystemItem:
target:action:

Stop

UIBarButtonSystemItemCamerainitWithBarButtonSystemItem:
target:action:

Camera

UIBarButtonSystemItemPlayinitWithBarButtonSystemItem:
target:action:

Play

UIBarButtonSystemItemPauseinitWithBarButtonSystemItem:
target:action:

Pause

UIBarButtonSystemItemRewindinitWithBarButtonSystemItem:
target:action:

Rewind

UIBarButtonSystem-
ItemFastForward

initWithBarButtonSystemItem:
target:action:

Fast Forward

UIBarButtonSystem-
ItemPageCurl

initWithBarButtonSystemItem:
target:action:

Page Curl

Tint

The bar button item color.

Access: tintColor

Bar Button Item
Bar Button Item Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

180

Bar Item Attributes Inspector Reference

Appearance, Behavior, and Tagging
Title

The bar item title.

Access: title.

Image

The bar item image.

Access: image.

Tag

The bar item tag.

Access: tag.

Enabled

Whether the bar item is enabled.

ArgumentMethodSelection

NOenabledUnselected

YESenabledSelected

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

181

Bar Item

Button Attributes Inspector Reference

Type

Type

The button type, which determines its functionality.

ArgumentMethodSelection

UIButtonTypeCustombuttonTypeCustom

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

182

Button

ArgumentMethodSelection

UIButtonTypeRoundedRectbuttonTypeRounded Rect

UIButtonTypeDetailDisclosurebuttonTypeDetail Disclosure

UIButtonTypeInfoLightbuttonTypeInfo Light

UIButtonTypeInfoDarkbuttonTypeInfo Dark

UIButtonTypeContactAddbuttonTypeAdd Contact

Appearance

This group specifies the appearance of the button in each of its possible states.

State Config

The button state to configure.

Choose a state, and then configure the remaining properties in this group. The settings are applied to those
properties when the button goes to that state.

ArgumentMethodSelection

UIControlStateNormalstateDefault

UIControlStateHighlightedstateHighlighted

UIControlStateSelectedstateSelected

UIControlStateDisabledstateDisabled

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

183

Title
Title Type

The type of text to use for the button title when the button is in the state identified by State Config.

Selection

Plain

Attributed

Title Type: Plain

These are the properties you can configure for plain text titles in the state identified by State Config.

Text

The plain text for the button title in the state identified by State Config.

Access: titleForState:, setTitle:forState:.

Font

The font for the button plain text title in the state identified by State Config.

Use <button>.titleLabel.font to access the value of this property.

Text Color

The color for the button plain text title in the state identified by State Config.

Access: titleColorForState:, setTitleColor:forState:.

Shadow Color

The color for the button plain text title in the state identified by State Config.

Access: titleShadowColorForState:, setTitleShadowColor:forState:.

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

184

Title Type: Attributed

These are the properties you can configure for attributed text titles in the state identified by State Config.

Attributed Title Layout

The alignment and other layout characteristics for the button attributed text title in the state identified by
State Config.

You can set these layout characteristics: alignment (left, center, right, justified, and natural), text color,
background color, text direction, line breaking, line height and spacing, paragraph spacing, indentation,
hyphenation, truncation, and header level).

Selection

Left

Center

Right

Justified

Natural

Text Color

Background Color

More

Font

The font for the button attributed text title in the state identified by State Config.

Access: button.titleLabel.font.

Attributed Text

The attributed text for the button title in the state identified by State Config.

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

185

Access: attributedTitleForState:.

Image

The image for the button when it is in the state identified by State Config.

Access: imageForState:, setImage:forState:.

Background

The background image for the button when it is in the state identified by State Config.

Access: backgroundImageForState:, setBackgroundImage:forState:.

Behavior

Shadow Offset
Offset Size

The width and height of the shadow of the button title.

Access: titleShadowOffset.

Reverses On Highlight

Whether the shadow of the button title changes when the button state changes to or from highlighted.

ArgumentMethodSelection

NOreversesTitleShadowWhenHighlightedUnselected

YESreversesTitleShadowWhenHighlightedSelected

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

186

Highlight Tint

The color for the button tint.

tintColor

Drawing
Shows Touch On Highlight

Whether the button glows when it is tapped.

ArgumentMethodSelection

NOshowsTouchWhenHighlightedUnselected

YESshowsTouchWhenHighlightedSelected

Highlighted Adjusts Image

Whether the button image changes when the button state changes to or from highlighted.

ArgumentMethodSelection

NOadjustsImageWhenHighlightedUnselected

YESadjustsImageWhenHighlightedSelected

Disabled Adjusts Image

Whether the button image changes when the button state changes to or from disabled.

ArgumentMethodSelection

NOadjustsImageWhenDisabledUnselected

YESadjustsImageWhenDisabledSelected

Line Break

The line break mode for the button title.

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

187

ArgumentMethodSelection

UILineBreakModeCliplineBreakModeClip

UILineBreakModeCharacterWraplineBreakModeCharacter Wrap

UILineBreakModeWordWraplineBreakModeWord Wrap

UILineBreakModeHeadTruncationlineBreakModeTruncate Head

UILineBreakModeMiddleTruncationlineBreakModeTruncate Middle

UILineBreakModeTailTruncationlineBreakModeTruncate Tail

Edge Insets

Edge insets resize and reposition the effective drawing rectangle for the button’s entire content, its title, and
its image.

Edge

The button edge to configure.

Selection

Content

Title

Image

Inset

The inset or outset margins of the rectangle identified by the Edge property.

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

188

You can specify a value for each the edges (top, left, bottom, right). A positive value shrinks (or insets) the
corresponding edge, moving it closer to the center of the button. A negative value expands (or outsets) the
corresponding edge.

Access: contentEdgeInsets, titleEdgeInsets, imageEdgeInsets.

Button
Button Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

189

Collection Reusable View Attributes Inspector Reference

Cell Reuse
Identifier

The collection reusable view reuse identifier.

Access: reuseIdentifier.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

190

Collection Reusable View

Collection View Attributes Inspector Reference

Layout, Scrolling, Header, and Footer
Layout

The layout to use to lay out the collection view content.

Access: collectionViewLayout

Selection

Flow

Custom

Layout: Flow

Scroll Direction

The direction along which the collection view scrolls.

Access: collection_view.collectionViewLayout.scrollDirection

ArgumentMethodSelection

UICollectionViewScrollDirectionVerticalscrollDirectionVertical

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

191

Collection View

ArgumentMethodSelection

UICollectionViewScrollDirectionHorizontalscrollDirectionHorizontal

Accessories

Section Header

Whether the collection view has a header.

Access: collection_view.collectionViewLayout.headerReferenceSize headerReferenceSize.

CodeSelection

collection_view.collectionViewLayout.headerReferenceSize
= 0.0

Unselected

collection_view.collectionViewLayout.headerReferenceSize
= // Floating-point value greater than 0.0

Selected

Section Footer

Whether the collection view has a footer.

Access: collection_view.collectionViewLayout.footerReferenceSize footerReferenceSize.

CodeSelection

collection_view.collectionViewLayout.footerReferenceSize
= 0.0

Unselected

collection_view.collectionViewLayout.footerReferenceSize
= // Floating-point value greater than 0.0

Selected

Layout: Custom

Class

The class of the layout to use to lay out the collection view content.

Collection View
Collection View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

192

Collection View Cell Attributes Inspector Reference

Cell Reuse
Identifier

The collection view cell reuse identifier.

Access: reuseIdentifier.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

193

Collection View Cell

Control Attributes Inspector Reference

Layout

Alignment
Horizontal

The horizontal alignment of the content.

ArgumentMethodSelection

UIControlContentHorizontalAlignment-
Left

contentHorizontalAlignmentLeft

UIControlContentHorizontalAlignment-
Center

contentHorizontalAlignmentCenter

UIControlContentHorizontalAlignment-
Right

contentHorizontalAlignmentRight

UIControlContentHorizontalAlignment-
Fill

contentHorizontalAlignmentFill

Vertical

The vertical alignment of the content.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

194

Control

ArgumentMethodSelection

UIControlContentVerticalAlignmentTopcontentVerticalAlignmentTop

UIControlContentVerticalAlignment-
Center

contentVerticalAlignmentCenter

UIControlContentVerticalAlignment-
Bottom

contentVerticalAlignmentBottom

UIControlContentVerticalAlignmentFillcontentVerticalAlignmentFill

Behavior

Content
Selected

Whether the control is selected.

ArgumentMethodSelection

NOselectedUnselected

YESselectedSelected

Enabled

Whether the user can interact with the control.

ArgumentMethodSelection

NOenabledUnselected

YESenabledSelected

Highlighted

Whether the control is highlighted.

Control
Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

195

ArgumentMethodChoice

NOhighlightedUnselected

YEShighlightedSelected

Control
Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

196

Date Picker Attributes Inspector Reference

Functionality

Mode

The functionality of the date picker.

The mode indicates whether the date picker is a date or time picker, or a count down timer.

ArgumentMethodSelection

UIDatePickerModeTimedatePickerModeTime

UIDatePickerModeDatedatePickerModeDate

UIDatePickerModeDateAndTimedatePickerModeDate and Time

UIDatePickerModeCountDownTimerdatePickerModeCount Down Timer

Locale

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

197

Date Picker

The locale for the date picker.

Access: locale.

Interval

The interval at which the date picker displays minutes.

Access: minuteInterval.

Selection

1 minute

2 minutes

3 minutes

4 minutes

5 minutes

6 minutes

10 minutes

12 minutes

15 minutes

20 minutes

30 minutes

Date

These properties are unused when the date picker mode is count down timer.

Date

The date the date picker displays.

Date Picker
Date Picker Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

198

Access: date.

Constraints
Minimum Date

The earliest date the date picker displays.

Access: minimumDate.

Maximum Date

The latest date the date picker displays.

Access: maximumDate.

Count Down Timer

Count Down in Seconds

The number of seconds from which the date picker counts down.

Access: countDownDuration.

Date Picker
Date Picker Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

199

Image View Attributes Inspector Reference

Images

The properties in this group are not used when you specify an image sequence using animationImages.

Image

The image displayed in the image view when its state is not highlighted.

Access: image.

Highlighted

The image displayed in the image view when its state is highlighted.

Access: highlightedImage.

Behavior

State
Highlighted

Whether the image view is highlighted.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

200

Image View

Toggle this property after setting Image and Highlighted to preview the images for each state.

ArgumentMethodSelection

NOhighlightedUnselected

YEShighlightedSelected

Image View
Image View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

201

Label Attributes Inspector Reference

Text and Behavior

Text
Text Type

The type of the label text.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

202

Label

Selection

Plain

Attributed

Text Type: Plain

This group configures the label plain text.

Text

The label plain text.

Access: text.

Color

The color of the label plain text.

Access: textColor.

Font

The font of the label plain text.

Access: font.

Alignment

The alignment of the label plain text.

ArgumentMethodSelection

NSTextAlignmentLefttextAlignmentLeft

NSTextAlignmentCentertextAlignmentCenter

NSTextAlignmentRighttextAlignmentRight

Label
Label Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

203

Text Type: Attributed

This group configures the text selected in Attributed Text.

Attributed Text Layout

The alignment and other layout characteristics of the selected attributed text.

To set alignment and other layout characteristics of part of the attributed text in code, you need to create an
attributed string with the desired characteristics and assign it to attributedText.

Selection

Left

Center

Right

Justified

Natural

Text Color

Background Color

More

Font

The font of the selected attributed text.

Access: font.

Attributed Text

The label attributed text.

Access: attributedText.

Lines

Label
Label Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

204

The maximum number of lines for the label text.

Set to 0 for an unlimited number of lines.

Access: numberOfLines.

Behavior
Enabled

Whether the label is enabled.

ArgumentMethodSelection

NOenabledUnselected

YESenabledSelected

Highlighted

Whether the label is highlighted.

Toggle this property after setting the text highlight color to preview the highlighted label.

ArgumentMethodSelection

NOhighlightedUnselected

YEShighlightedSelected

Text Baseline and Line Breaks

Baseline

How to adjust the text baseline so that the text fits in the label.

ArgumentMethodSelection

UIBaselineAdjustmentAlignBaselinesbaselineAdjustmentAlign Baselines

Label
Label Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

205

ArgumentMethodSelection

UIBaselineAdjustmentAlignCentersbaselineAdjustmentAlign Centers

UIBaselineAdjustmentNonebaselineAdjustmentNone

Line Breaks

The line break mode of the label text.

ArgumentMethodSelection

UILineBreakModeCliplineBreakModeClip

UILineBreakModeCharacterWraplineBreakModeCharacter Wrap

UILineBreakModeWordWraplineBreakModeWord Wrap

UILineBreakModeHeadTruncationlineBreakModeTruncate Head

UILineBreakModeMiddleTruncationlineBreakModeTruncate Middle

UILineBreakModeTailTruncationlineBreakModeTruncate Tail

Text Sizing

Autoshrink

How to shrink the label text so that it fits in the label.

MethodArgumentMethodSelection

NOadjustsFontSize-
ToFitWidth

Fixed Font Size

minimumScaleFactorYESadjustsFontSize-
ToFitWidth

Minimum Font Scale

minimumFontSizeYESadjustsFontSize-
ToFitWidth

Minimum Font Size

Label
Label Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

206

Tighten Letter Spacing

Whether to reduce the label text letter spacing so that it fits in the label.

ArgumentMethodSelection

NOadjustsLetterSpacingToFitWidthUnselected

YESadjustsLetterSpacingToFitWidthSelected

Text Highlight and Shadow

Highlighted

The color for the label text when the label is highlighted.

This property applies only to plain text labels.

Access: highlightedTextColor.

Shadow

The color of the label text shadow.

Access: shadowColor.

Shadow Offset

The offset of the label text shadow.

Access: shadowOffset.

Label
Label Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

207

Navigation Bar Attributes Inspector Reference

Appearance
Style

The basic appearance of the navigation bar.

ArgumentMethodSelection

UIBarStyleDefaultbarStyleDefault

UIBarStyleBlackbarStyleBlack Opaque

UIBarStyleBlackTranslucentbarStyleBlack Translucent

Tint

The color of the navigation bar.

Access: tintColor.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

208

Navigation Bar

Navigation Item Attributes Inspector Reference

PropertyGroup
Title

The navigation item title. Access: title.

Prompt

The navigation item prompt. Access: prompt.

Back Button

The bar button item the navigation item displays when it needs a back button. Access: backBarButtonItem.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

209

Navigation Item

Page Control Attributes Inspector Reference

Behavior and Pages

Number of Pages

The number of pages the page control shows.

Access: numberOfPages

Current

The index of the page control current page.

Access: currentPage

Behavior
Hides for Single Page

Whether the page control is hidden when the number of pages is 1.

ArgumentMethodChoice

NOhidesForSinglePageUnselected

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

210

Page Control

ArgumentMethodChoice

YEShidesForSinglePageSelected

Defers Page Display

Whether the page control defers updating its display when the user selects a page.

When display-update is deferred, the page control does not update its display when the user selects a page.
To update the display, call updateCurrentPageDisplay.

ArgumentMethodChoice

NOdefersCurrentPageDisplayUnselected

YESdefersCurrentPageDisplaySelected

Appearance

Tint Color

The color of the page control dots that correspond to non-open pages.

Access: pageIndicatorTintColor

Current Page

The color of the page control dot that corresponds to the currently open page.

Access: currentPageIndicatorTintColor

Page Control
Page Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

211

Picker View Attributes Inspector Reference

Behavior
Shows Selection Indicator

Whether the picker view shows the bar that identifies the selected row in each component.

ArgumentMethodSelection

NOshowsSelectionIndicatorUnselected

YESshowsSelectionIndicatorSelected

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

212

Picker View

Progress View Attributes Inspector Reference

Appearance and Progress
Style

The basic appearance of the progress view.

ArgumentMethodSelection

UIProgressViewStyleDefaultprogressViewStyleDefault

UIProgressViewStyleBarprogressViewStyleBar

Progress

The progress view progress.

Access: progress.

Progress Tint

The color of the progress view completed-progress bar.

Access: progressTintColor.

Track Tint

The color of the progress view track.

Access: trackTintColor.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

213

Progress View

Scroll View Attributes Inspector Reference

Appearance

Style

The appearance of the scroll view scroll indicators.

ArgumentMethodSelection

UIScrollViewIndicatorStyleDefaultindicatorStyleDefault

UIScrollViewIndicatorStyleBlackindicatorStyleBlack

UIScrollViewIndicatorStyleWhiteindicatorStyleWhite

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

214

Scroll View

Scroll Indicators and Scrolling

Scrollers
Shows Horizontal Scrollers

Whether the scroll view horizontal scroll indicator is visible.

ArgumentMethodSelection

NOshowsHorizontalScrollIndicatorUnselected

YESshowsHorizontalScrollIndicatorSelected

Shows Vertical Scrollers

Whether the scroll view vertical scroll indicator is visible.

ArgumentMethodSelection

NOshowsVerticalScrollIndicatorUnselected

YESshowsVerticalScrollIndicatorSelected

Scrolling Enabled

Whether the user can scroll the scroll view contents.

When scrolling is enabled the user can scroll the scroll view contents.

ArgumentMethodSelection

NOscrollEnabledUnselected

YESscrollEnabledSelected

Scroll View
Scroll View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

215

Paging Enabled

Whether the scroll view stops at regular intervals as the user scrolls.

When paging is enabled the scroll view stops on multiples of the scroll view bounds as the user scrolls.

ArgumentMethodSelection

NOpagingEnabledUnselected

YESpagingEnabledSelected

Direction Lock Enabled

Whether the user can scroll in only one cardinal direction at a time.

When direction lock is enabled the user can scroll in only one cardinal direction at a time, vertically or
horizontally, except when the user scrolls diagonally.

ArgumentMethodSelection

NOdirectionalLockEnabledUnselected

YESdirectionalLockEnabledSelected

Scroll Bounce

Bounce
Bounces

Whether the scroll view bounces when the user scrolls past a content edge.

ArgumentMethodSelection

NObouncesUnselected

YESbouncesSelected

Scroll View
Scroll View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

216

Bounce Horizontally

Whether the scroll view bounces when the user scrolls past a horizontal content edge.

When horizontal bouncing is allowed, the scroll view lets the user scroll horizontally even when the scroll view
content does not fill the scroll view bounds horizontally.

ArgumentMethodSelection

NOalwaysBounceHorizontalUnselected

YESalwaysBounceHorizontalSelected

Bounce Vertically

Whether the scroll view bounces when the user scrolls past a vertical content edge.

When vertical bouncing is allowed, the scroll view lets the user scroll vertically even when the scroll view
content does not fill the scroll view bounds vertically.

ArgumentMethodSelection

NOalwaysBounceVerticalUnselected

YESalwaysBounceVerticalSelected

Zooming

Zoom
Min

The minimum zoom scale factor the user can apply to the scroll view content.

Access: minimumZoomScale.

Max

The maximum zoom scale factor the user can apply to the scroll view content.

Scroll View
Scroll View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

217

Access: maximumZoomScale.

Events and Zoom Bounce

Touch
Bounces Zoom

Whether the scroll view bounces when the user zooms past the scroll view minimum or maximum zoom scale
factors.

ArgumentMethodSelection

NObouncesZoomUnselected

YESbouncesZoomSelected

Delays Content Touches

Whether the scroll view delays the handling of every touch event to determine whether the event is a scrolling
event.

ArgumentMethodSelection

NOdelaysContentTouchesUnselected

YESdelaysContentTouchesSelected

Cancellable Content Touches

Whether the scroll view can convert a touch event into a scroll event to reflect user intent.

When content touches are cancellable, the view can cancel the handling of a touch event and initiate a scroll
event when the user drags.

Scroll View
Scroll View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

218

ArgumentMethodSelection

NOcanCancelContentTouchesUnselected

YEScanCancelContentTouchesSelected

Scroll View
Scroll View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

219

Search Bar Attributes Inspector Reference

Search Term and Captions

Text

The initial search string.

Access: text.

Placeholder

The text that appears when there is no search string.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

220

Search Bar

Access: placeholder.

Prompt

The text that appears above the text field.

Access: prompt.

Appearance

Style

The basic appearance of the search bar.

ArgumentMethodSelection

UIBarStyleDefaultbarStyleDefault

UIBarStyleBlackbarStyleBlack Opaque

UIBarStyleBlackTranslucentbarStyleBlack Translucent

Tint

The color of the search bar.

Access: tintColor.

Capabilities

Shows Search Results Button

Whether the search bar displays the Search Results button.

Search Bar
Search Bar Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

221

ArgumentMethodSelection

NOshowsSearchResultsButtonUnselected

YESshowsSearchResultsButtonSelected

Shows Bookmarks Button

Whether the search bar displays the Bookmarks button.

ArgumentMethodSelection

NOshowsBookmarkButtonUnselected

YESshowsBookmarkButtonSelected

Shows Cancel Button

Whether the search bar displays the Cancel button.

ArgumentMethodSelection

NOshowsCancelButtonUnselected

YESshowsCancelButtonSelected

Shows Scope Bar

Whether the search bar displays the scope bar.

ArgumentMethodSelection

NOshowsScopeBarUnselected

YESshowsScopeBarSelected

Search Bar
Search Bar Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

222

Scope Titles

Scope Title List

The titles of the scope buttons in the scope bar.

Access: scopeButtonTitles.

Text Input

Capitalize

Whether and when the keyboard activates the Shift key while the user types text.

ArgumentMethodSelection

UITextAutocapitalizationTypeNoneautocapitalizationTypeNone

UITextAutocapitalizationTypeWordsautocapitalizationTypeWords

UITextAutocapitalizationTypeSentencesautocapitalizationTypeSentences

UITextAutocapitalization-
TypeAllCharacters

autocapitalizationTypeAll Characters

Correction

Whether to auto-correct text the user types.

ArgumentMethodSelection

UITextAutocorrectionTypeDefaultautocorrectionTypeDefault

Search Bar
Search Bar Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

223

ArgumentMethodSelection

UITextAutocorrectionTypeNoautocorrectionTypeNo

UITextAutocorrectionTypeYesautocorrectionTypeYes

Keyboard

The type of keyboard that appears on text input.

ArgumentMethodSelection

UIKeyboardTypeDefaultkeyboardTypeDefault

UIKeyboardTypeASCIICapablekeyboardTypeASCII Capable

UIKeyboardTypeNumbersAndPunctuationkeyboardTypeNumbers and Punctuation

UIKeyboardTypeURLkeyboardTypeURL

UIKeyboardTypeNumberPadkeyboardTypeNumber Pad

UIKeyboardTypePhonePadkeyboardTypePhone Pad

UIKeyboardTypeEmailAddresskeyboardTypeE-mail Address

Search Bar
Search Bar Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

224

Segmented Control Attributes Inspector Reference

Appearance and Behavior
This group specifies the appearance and behavior for the segmented control.

Style

The basic appearance of the segmented control.

ArgumentMethodSelection

UISegmentedControlStylePlainsegmentedControlStylePlain

UISegmentedControlStyleBorderedsegmentedControlStyleBordered

UISegmentedControlStyleBarsegmentedControlStyleBar

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

225

Segmented Control

State
Momentary

Whether the segmented control segments are only momentarily selected.

A segmented control selection behavior can be normal or momentary .

 ● Normal selection. When the user taps a segment, the segment becomes selected (the segmented control
selectedSegmentIndex is set to that segment’s index).

 ● Momentary selection. When the user taps a segment, the segment does not become selected, but the
segment appears selected while the user holds it.

ArgumentMethodSelection

NOmomentaryUnselected

YESmomentarySelected

Tint

The color of the segmented control.

tintColor

Segments

The number of segments in the segmented control.

Access: numberOfSegments.

Segment Appearance and Behavior
This group specifies the appearance and behavior for each of the segmented control segments.

Segmented Control
Segmented Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

226

Segment

The segment to configure.

Choose a segment, and then configure the properties in this group.

Title

The title of the segment identified by Segment.

Access: setTitle:forSegmentAtIndex:.

Image

The image of the segment identified by Segment.

Access: setImage:forSegmentAtIndex:.

Behavior
Enabled

Whether segment identified by Segment is enabled.

ArgumentMethodSelection

NOsetEnabled: forSegmentAtIndex:Unselected

YESsetEnabled: forSegmentAtIndex:Selected

Selected

Whether segment identified by Segment is selected.

Use selectedSegmentIndex to select a segment.

Selection

Unselected

Selected

Content Offset

The offset from the segment origin at which to draw the content of the segment identified by Segment.

Segmented Control
Segmented Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

227

Access: setContentOffset:forSegmentAtIndex:.

Segmented Control
Segmented Control Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

228

Slider Attributes Inspector Reference

Value

Minimum

The bottom of the range of values the slider can have.

Access: minimumValue.

Maximum

The top of the range of values the slider can have.

Access: maximumValue.

Current

The numeric value of the slider.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

229

Slider

Access: value.

Images

Min Image

The image displayed on the minimum side of the slider.

Access: minimumValueImage.

Max Image

The image displayed on the maximum side of the slider.

Access: maximumValueImage.

Appearance

Min Track Tint

The color of the track on the minimum side of the slider.

Access: minimumTrackTintColor.

Max Track Tint

The color of the track on the maximum side of the slider.

Access: maximumTrackTintColor.

Thumb Tint

The color of the slider thumb.

Access" thumbTintColor.

Slider
Slider Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

230

Update Events

Continuous

Whether the slider continuously sends update events as the user moves the thumb.

You can receive updated values on the slider by responding to the value changed event
UIControlEventValueChanged. In continuous updates, the slider sends multiple value changed events as
the user moves the thumb. In noncontinuous updates, the slider sends one value changed event when the
user releases the thumb.

ArgumentMethodSelection

NOcontinuousUnselected

YEScontinuousSelected

Slider
Slider Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

231

Stepper Attributes Inspector Reference

Value

Minimum

The minimum value of the stepper.

Access: minimumValue.

Maximum

The maximum value of the stepper.

Access: maximumValue.

Current

The value of the stepper.

Access: value.

Step

The amount by which the stepper increments or decrements its value.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

232

Stepper

Access: stepValue.

Behavior

Autorepeat

Whether the stepper keeps incrementing or decrementing its value while either of its buttons is held down.

ArgumentMethodSelection

NOautorepeatUnselected

YESautorepeatSelected

Continuous

Whether the stepper continuously sends update events as either of its buttons is held down.

In continuous updates the stepper sends update events as the user holds the button. In noncontinuous updates
the stepper sends one update event when the user releases the button.

ArgumentMethodSelection

NOcontinuousUnselected

YEScontinuousSelected

Wraps

Whether the stepper wraps around the minimum and maximum values.

ArgumentMethodSelection

NOwrapsUnselected

YESwrapsSelected

Stepper
Stepper Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

233

Switch Attributes Inspector Reference

Appearance and State
State

Whether the switch is on or off.

ArgumentMethodSelection

YESonOn

NOonOff

On Tint

The color of the switch when it is on.

Access: onTintColor.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

234

Switch

Tab Bar Attributes Inspector Reference

Appearance
Tint

The color of the tab bar.

Access: tintColor.

Image Tint

The color for the image of tab bar items when selected at runtime.

Access: selectedImageTintColor.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

235

Tab Bar

Tab Bar Item Attributes Inspector Reference

Appearance
Badge

The tab bar item badge.

Access: badgeValue.

Identifier

The tab bar item icon.

ArgumentMethodSelection

Custom

UITabBarSystemItemMoreinitWithTabBarSystemItem: tag:More

UITabBarSystemItemFavoritesinitWithTabBarSystemItem: tag:Favorites

UITabBarSystemItemFeaturedinitWithTabBarSystemItem: tag:Featured

UITabBarSystemItemTopRatedinitWithTabBarSystemItem: tag:Top Rated

UITabBarSystemItemRecentsinitWithTabBarSystemItem: tag:Recents

UITabBarSystemItemContactsinitWithTabBarSystemItem: tag:Contacts

UITabBarSystemItemHistoryinitWithTabBarSystemItem: tag:History

UITabBarSystemItemBookmarksinitWithTabBarSystemItem: tag:Bookmarks

UITabBarSystemItemSearchinitWithTabBarSystemItem: tag:Search

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

236

Tab Bar Item

ArgumentMethodSelection

UITabBarSystemItemDownloadsinitWithTabBarSystemItem: tag:Downloads

UITabBarSystemItemMostRecentinitWithTabBarSystemItem: tag:Most Recent

UITabBarSystemItemMostViewedinitWithTabBarSystemItem: tag:Most Viewed

Tab Bar Item
Tab Bar Item Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

237

Table View Attributes Inspector Reference

Appearance

Style

The basic appearance of the table view.

ArgumentMethodSelection

UITableViewStylePlainstylePlain

UITableViewStyleGroupedstyleGrouped

Separator
Separator Style

The style for table view cells used as separators.

ArgumentMethodSelection

UITableViewCellSeparatorStyleNoneseparatorStyleNone

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

238

Table View

ArgumentMethodSelection

UITableViewCellSeparatorStyleSingleLineseparatorStyleSingle Line

UITableViewCellSeparatorStyleSingle-
LineEtched

separatorStyleSingle Line Etched

Separator Color

The color for table view cells used as separators.

Access: separatorColor

Behavior

Selection

The type of selection the table view allows.

Access: allowsSelection allowsMultipleSelection

CodeSelection

table_view.allowsSelection = NONo Selection

table_view.allowsSelection = YESSingle Selection

table_view.allowsMultipleSelection = YESMultiple Selection

Editing

The type of selection the table view allows in editing mode.

Access: allowsSelectionDuringEditing allowsMultipleSelectionDuringEditing

CodeSelection

table_view.allowsSelectionDuringEditing = NONo Selection During Editing

table_view.allowsSelectionDuringEditing = YESSingle Selection During Editing

Table View
Table View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

239

CodeSelection

table_view.allowsMultipleSelectionDuringEditing
= YES

Multiple Selection During Editing

Show Selection on Touch

This item appears to be nonoperational.

Table Index

Index Row Limit

This item appears to be nonoperational.

Table View
Table View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

240

Table View Cell Attributes Inspector Reference

Style

The Image property appears in this group only when Style is Basic, Right Detail, or Subtitle.

Style

The appearance and layout of the table view cell labels.

For the Custom style, your custom subclass of UITableViewCell determines the appearance of the table
view cell.

Access: reuseIdentifier

ArgumentMethodSelection

Custom

UITableViewCellStyleDefaultinitWithStyle: reuseIdentifier:Basic

UITableViewCellStyleValue1initWithStyle: reuseIdentifier:Right Detail

UITableViewCellStyleValue2initWithStyle: reuseIdentifier:Left Detail

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

241

Table View Cell

ArgumentMethodSelection

UITableViewCellStyleSubtitleinitWithStyle: reuseIdentifier:Subtitle

Image

The image for the table view cell content.

Access: image

Cell Reuse

Identifier

Identifies the table view cell for cell reuse.

Access: initWithStyle:reuseIdentifier:reuseIdentifier

Appearance

Selection

Whether and how the table view cell indicates that it is selected.

ArgumentMethodSelection

UITableViewCellSelectionStyleNoneselectionStyleNone

UITableViewCellSelectionStyleBlueselectionStyleBlue

UITableViewCellSelectionStyleGrayselectionStyleGray

Accessory

The accessory view type for the table view cell in the Normal state.

Table View Cell
Table View Cell Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

242

The three states of a table view cell are: Normal, Editing, and Delete Confirmation (Cell State Mask
Constants).

ArgumentMethodSelection

UITableViewCellAccessoryNoneaccessoryTypeNone

UITableViewCellAccessoryDisclosureIndicatoraccessoryTypeDisclosure Indicator

UITableViewCellAccessoryDetail-
DisclosureButton

accessoryTypeDetail Disclosure

UITableViewCellAccessoryCheckmarkaccessoryTypeCheckmark

Editing Acc.

The accessory view type of the table view cell in the Editing state.

The three states of a table view cell are: Normal, Editing, and Delete Confirmation (Cell State Mask
Constants).

ArgumentMethodSelection

UITableViewCellAccessoryNoneeditingAccessoryTypeNone

UITableViewCellAccessoryDisclosure-
Indicator

editingAccessoryTypeDisclosure Indicator

UITableViewCellAccessoryDetail-
DisclosureButton

editingAccessoryTypeDetail Disclosure

UITableViewCellAccessoryCheckmarkeditingAccessoryTypeCheckmark

Indentation and Behavior

Indentation
Level

The table view cell indentation level.

Table View Cell
Table View Cell Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

243

Access: indentationLevel

Width

The width in points of each level of indentation.

Access: indentationWidth

Indent While Editing

Whether to indent the table view cell background when the table view cell is in the Editing state.

ArgumentMethodSelection

NOshouldIndentWhileEditingUnselected

YESshouldIndentWhileEditingSelected

Shows Re-order Controls

Whether the table view cell shows the reordering control.

ArgumentMethodSelection

NOshowsReorderControlUnselected

YESshowsReorderControlSelected

Table View Cell
Table View Cell Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

244

Text View Attributes Inspector Reference

Text

Text
Text Type

The type of the text view text.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

245

Text View

Selection

Plain

Attributed

Text Type: Plain

Use this group to configure the text view plain text.

Text

The text view plain text.

Access: text

Color

The color of the text view plain text.

Access: textColor

Font

The font of the text view plain text.

Access: font

Alignment

The alignment of the text view plain text.

ArgumentMethodSelection

NSTextAlignmentLefttextAlignmentLeft

NSTextAlignmentCentertextAlignmentCenter

NSTextAlignmentCentertextAlignmentRight

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

246

Text Type: Attributed

Use this group set the characteristics of the selected text in Attributed Text.

To set alignment and other layout characteristics of part of the attributed text in code, you need to create an
attributed string with the desired characteristics and assign it to attributedText.

Attributed Text Layout

The alignment and other layout characteristics of the selected attributed text.

Selection

Left

Center

Right

Justified

Natural

Text Color

Background Color

More

Font

The font of the selected attributed text.

Attributed Text

The the text view attributed text.

Access: attributedText

Allows Editing Attributes

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

247

Whether the user can change characteristics of the attributed text.

ArgumentMethodSelection

NOallowsEditingTextAttributesUnselected

YESallowsEditingTextAttributesSelected

Behavior

Editable

Whether the user can edit text view text.

ArgumentMethodSelection

NOeditableUnselected

YESeditableSelected

Data Detection

Detection
Links

Whether the text view detects hyperlinks in the text.

Access: dataDetectorTypes

CodeSelection

text_view.dataDetectorTypes &= ~UIDataDetectorTypeLinkUnselected

text_view.dataDetectorTypes |= UIDataDetectorTypeLinkSelected

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

248

Addresses

Whether the text view detects addresses in the text.

Access: dataDetectorTypes

CodeSelection

text_view.dataDetectorTypes &= ~UIDataDetectorTypeAddressUnselected

text_view.dataDetectorTypes |= UIDataDetectorTypeAddressesSelected

Phone Numbers

Whether the view detects phone numbers in the text.

Access: dataDetectorTypes

CodeSelection

text_view.dataDetectorTypes &= ~UIDataDetectorTypePhoneNumberUnselected

text_view.dataDetectorTypes |= UIDataDetectorTypePhoneNumberSelected

Events

Whether the text view detects calendar events in the text.

Access: dataDetectorTypes

CodeSelection

text_view.dataDetectorTypes &= ~UIDataDetectorTypeCalendarEventUnselected

text_view.dataDetectorTypes |= UIDataDetectorTypeCalendarEventSelected

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

249

Text Input and Keyboard

Capitalization

Whether and when the keyboard activates the Shift key while the user types text.

ArgumentMethodSelection

UITextAutocapitalizationTypeNoneautocapitalizationTypeNone

UITextAutocapitalizationTypeWordsautocapitalizationTypeWords

UITextAutocapitalizationTypeSentencesautocapitalizationTypeSentences

UITextAutocapitalization-
TypeAllCharacters

autocapitalizationTypeAll Characters

Correction

Whether to auto-correct text the text user types.

ArgumentMethodSelection

UITextAutocorrectionTypeDefaultautocorrectionTypeDefault

UITextAutocorrectionTypeNoautocorrectionTypeNo

UITextAutocorrectionTypeYesautocorrectionTypeYes

Keyboard

The keyboard that appears on text input.

ArgumentMethodSelection

UIKeyboardTypeDefaultkeyboardTypeDefault

UIKeyboardTypeASCIICapablekeyboardTypeASCII Capable

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

250

ArgumentMethodSelection

UIKeyboardTypeNumbersAnd-
Punctuation

keyboardTypeNumbers and Punctuation

UIKeyboardTypeURLautocorrectionTypeURL

UIKeyboardTypeNumberPadkeyboardTypeNumber Pad

UIKeyboardTypePhonePadkeyboardTypePhone Pad

UIKeyboardTypeNamePhonePadkeyboardTypeName Phone Pad

UIKeyboardTypeEmailAddresskeyboardTypeE-mail Address

Appearance

The keyboard to use for text input.

ArgumentMethodSelection

UIKeyboardAppearanceDefaultkeyboardAppearanceDefault

UIKeyboardAppearanceAlertkeyboardAppearanceAlert

Return Key

The type of the keyboard Return key.

The type of the Return key specifies the Return key title.

ArgumentMethodSelection

UIReturnKeyDefaultreturnKeyTypeDefault

UIReturnKeyGoreturnKeyTypeGo

UIReturnKeyGooglereturnKeyTypeGoogle

UIReturnKeyJoinreturnKeyTypeJoin

UIReturnKeyNextreturnKeyTypeNext

UIReturnKeyRoutereturnKeyTypeRoute

UIReturnKeySearchreturnKeyTypeSearch

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

251

ArgumentMethodSelection

UIReturnKeySendreturnKeyTypeSend

UIReturnKeyYahooreturnKeyTypeYahoo

UIReturnKeyDonereturnKeyTypeDone

UIReturnKeyEmergencyCallreturnKeyTypeEmergency Call

Auto-enable Return Key

The Auto-enable Return Key checkbox has no effect on text views.

ArgumentMethodSelection

NOenablesReturnKeyAutomaticallyUnselected

YESenablesReturnKeyAutomaticallySelected

Secure

The Secure checkbox has no effect on text views.

ArgumentMethodSelection

NOsecureTextEntryUnselected

YESsecureTextEntrySelected

Text View
Text View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

252

Toolbar Attributes Inspector Reference

Appearance
Style

The basic appearance of the toolbar.

ArgumentMethodSelection

UIBarStyleDefaultbarStyleDefault

UIBarStyleBlackbarStyleBlack Opaque

UIBarStyleBlackTranslucentbarStyleBlack Translucent

Tint

The color of the toolbar.

Access: tintColor.

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

253

Toolbar

View Attributes Inspector Reference

Layout and Tagging

Mode

How the view presents its content when the view size changes.

ArgumentMethodSelection

UIViewContentModeScaleToFillcontentModeScale to Fill

UIViewContentModeScaleAspectFitcontentModeAspect Fit

UIViewContentModeScaleAspectFillcontentModeAspect Fill

UIViewContentModeRedrawcontentModeRedraw

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

254

View

ArgumentMethodSelection

UIViewContentModeCentercontentModeCenter

UIViewContentModeTopcontentModeTop

UIViewContentModeBottomcontentModeBottom

UIViewContentModeLeftcontentModeLeft

UIViewContentModeRightcontentModeRight

UIViewContentModeTopLeftcontentModeTop Left

UIViewContentModeTopRightcontentModeTop Right

UIViewContentModeBottomLeftcontentModeBottom Left

UIViewContentModeBottomRightcontentModeBottom Right

Tag

The view tag.

Access: tag.

Events

Interaction
User Interaction Enabled

Whether the view processes touch and keyboard events.

ArgumentMethodSelection

NOuserInteractionEnabledUnselected

YESuserInteractionEnabledSelected

Multiple Touch

View
View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

255

Whether the view processes multiple touch events.

ArgumentMethodSelection

NOmultipleTouchEnabledUnselected

YESmultipleTouchEnabledSelected

Appearance

Alpha

The view transparency.

The range of values is from 0.0 and 1.0:

 ● 0.0 makes the view completely transparent.

 ● 1.0 makes the view completely opaque.

Access: alpha.

Background

The view background color.

Access: backgroundColor.

Drawing and Sizing

Drawing
Opaque

View
View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

256

Whether the drawing system treats the view as opaque.

ArgumentMethodSelection

NOopaqueUnselected

YESopaqueSelected

Hidden

Whether the view is hidden.

ArgumentMethodSelection

NOhiddenUnselected

YEShiddenSelected

Clears Graphics Context

Whether the view clears its bounds before drawing.

ArgumentMethodSelection

NOclearsContextBeforeDrawingUnselected

YESclearsContextBeforeDrawingSelected

Clip Subviews

Whether subviews are clipped to the view bounds.

If the view alpha value (alpha) is 1.0, drawing performance can be improved by indicating that the view is
opaque.

ArgumentMethodSelection

NOclipsToBoundsUnselected

YESclipsToBoundsSelected

Autoresize Subviews

View
View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

257

Whether the view resizes subviews when the view size changes.

If the view alpha value (alpha) is 1.0, drawing performance can be improved by indicating that the view is
opaque.

ArgumentMethodSelection

NOautoresizesSubviewsUnselected

YESautoresizesSubviewsSelected

Sizing

Stretching

The rectangle that identifies stretchable area of the view.

The values for the rectangle specifiers (X, Y, Width, and Height) are in the range 0.0 to 1.0. For example, to
make only half of the view stretchable, specify the rectangle (0.0, 0.0, 0.5, 1.0).

Access: contentStretch.

View
View Attributes Inspector Reference

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

258

Web View Attributes Inspector

Data Detection and Sizing

Scaling
Scales Page to Fit

Whether the view resizes the webpage to fit the view bounds.

ArgumentMethodSelection

NOautoresizesSubviewsUnselected

YESautoresizesSubviewsSelected

Detection
Links

Whether the view detects hyperlinks in the webpage.

Access: dataDetectorTypes.

CodeSelection

web_view.dataDetectorTypes &= ~UIDataDetectorTypeLinkUnselected

web_view.dataDetectorTypes |= UIDataDetectorTypeLinkSelected

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

259

Web View

Addresses

Whether the view detects addresses in the webpage.

Access: dataDetectorTypes.

CodeSelection

web_view.dataDetectorTypes &= ~UIDataDetectorTypeAddressUnselected

web_view.dataDetectorTypes |= UIDataDetectorTypeAddressesSelected

Phone Numbers

Whether the view detects phone numbers in the webpage.

CodeSelection

web_view.dataDetectorTypes &= ~UIDataDetectorTypePhoneNumberUnselected

web_view.dataDetectorTypes |= UIDataDetectorTypePhoneNumberSelected

Events

Whether the view detects calendar events in the webpage.

CodeSelection

web_view.dataDetectorTypes &=
~UIDataDetectorTypeCalendarEvent

Unselected

web_view.dataDetectorTypes |= UIDataDetectorTypeCalendarEventSelected

Web View
Web View Attributes Inspector

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

260

This table describes the changes to UIKit User Interface Catalog .

NotesDate

Revised discussions of Auto-enable Return Key and Secure checkboxes in
UITextView attributes inspector. Fixed typos.

2013-12-16

New document that describes the views and controls in UIKit, drawing
from the human interface guidelines for more depth.

2013-09-18

2013-12-16 | Copyright © 2013 Apple Inc. All Rights Reserved.

261

Document Revision History

Apple Inc.
Copyright © 2013 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, GarageBand, iPad, iPhone,
iTunes, Numbers, Objective-C, Pages, Safari, and
Xcode are trademarks of Apple Inc., registered in
the U.S. and other countries.

Genius is a service mark of Apple Inc., registered
in the U.S. and other countries.

X Window System is a trademark of the
Massachusetts Institute of Technology.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	UIKit User Interface Catalog
	Contents
	Part I: Views
	About Views
	Content of Views
	Behavior of Views
	Appearance of Views
	Background Color and Alpha
	Appearance Proxies
	Tint Color
	Template Images

	Using Auto Layout with Views
	Making Views Accessible
	Debugging Views

	Action Sheets
	Content of Action Sheets (Programmatic)
	Behavior of Action Sheets (Programmatic)
	Using Auto Layout with Action Sheets
	Making Action Sheets Accessible
	Internationalizing Action Sheets
	Debugging Action Sheets
	Elements Similar to an Action Sheet

	Activity Indicators
	Content of Activity Indicators
	Behavior of Activity Indicators
	Appearance of Activity Indicators
	Style

	Using Auto Layout with Activity Indicators
	Making Activity Indicators Accessible
	Internationalizing Activity Indicators
	Debugging Activity Indicators
	Elements Similar to an Activity Indicator

	Alert Views
	Content of Alert Views (Programmatic)
	Behavior of Alert Views (Programmatic)
	Appearance of Alert Views
	Using Auto Layout with Alert Views
	Making Alert Views Accessible
	Internationalizing Alert Views
	Debugging Alert Views
	Elements Similar to an Alert View

	Collection Views
	Content of Collection Views
	Behavior of Collection Views
	Appearance of Collection Views
	Layout
	Background
	Cell Background
	Spacing
	Cell Padding

	Using Auto Layout with Collection Views
	Making Collection Views Accessible
	Internationalizing Collection Views
	Elements Similar to a Collection View

	Image Views
	Content of Image Views
	Behavior of Image Views
	Appearance of Image Views
	Content Mode
	Images
	Transparency and Alpha Blending

	Using Auto Layout with Image Views
	Making Image Views Accessible
	Internationalizing Image Views
	Debugging Image Views
	Elements Similar to an Image View

	Labels
	Content of Labels
	Behavior of Labels
	Appearance of Labels
	Text Appearance
	Highlighted Appearance
	Text Shadow

	Using Auto Layout with Labels
	Making Labels Accessible
	Internationalizing Labels
	Debugging Labels
	Elements Similar to a Label

	Navigation Bars
	Content of Navigation Bars
	Behavior of Navigation Bars
	Appearance of Navigation Bars
	Bar Style
	Tint Color
	Images
	Translucency
	Title Attributes
	Bar Button Item Icons

	Using Auto Layout with Navigation Bars
	Making Navigation Bars Accessible
	Internationalizing Navigation Bars
	Debugging Navigation Bars
	Elements Similar to a Navigation Bar

	Picker Views
	Content of Picker Views (Programmatic)
	Behavior of Picker Views
	Appearance of Picker Views (Programmatic)
	Using Auto Layout with Picker Views
	Making Picker Views Accessible
	Internationalizing Picker Views
	Debugging Picker Views
	Elements Similar to a Picker View

	Progress Views
	Content of Progress Views
	Behavior of Progress Views
	Appearance of Progress Views
	Style
	Tint Color

	Using Auto Layout with Progress Views
	Making Progress Views Accessible
	Internationalizing Progress Views
	Elements Similar to a Progress View

	Scroll Views
	Content of Scroll Views
	Behavior of Scroll Views
	Appearance of Scroll Views
	Style
	Content Layout

	Using Auto Layout with Scroll Views
	Making Scroll Views Accessible
	Internationalizing Scroll Views
	Elements Similar to a Scroll View

	Search Bars
	Content of Search Bars
	Behavior of Search Bars
	Appearance of Search Bars
	Style
	Tint Color
	Background Images
	Translucency
	Layout

	Using Auto Layout with Search Bars
	Making Search Bars Accessible
	Internationalizing Search Bars
	Debugging Navigation Bars
	Elements Similar to a Search Bar

	Tab Bars
	Content of Tab Bars
	Content of Tab Bars
	Behavior of Tab Bars (Programmatic)
	Appearance of Tab Bars
	Style
	Tint Color
	Images
	Translucency
	Tab Bar Item Icons

	Using Auto Layout with Tab Bars
	Making Tab Bars Accessible
	Internationalizing Tab Bars
	Elements Similar to a Tab Bar

	Table Views
	Content of Table Views
	Behavior of Table Views
	Appearance of Table Views
	Style
	Cell Selection Style
	Accessory Types
	Cell Layout
	Header and Footer Appearance

	Using Auto Layout with Table Views
	Making Table Views Accessible
	Internationalizing Table Views
	Elements Similar to a Table View

	Text Views
	Content of Text Views
	Behavior of Text Views
	Appearance of Text Views
	Text Appearance

	Using Auto Layout with Text Views
	Making Text Views Accessible
	Internationalizing Text Views
	Debugging Text Views
	Elements Similar to a Text View

	Toolbars
	Content of Toolbars
	Behavior of Toolbars
	Appearance of Toolbars
	Style
	Tint Color
	Background Images
	Translucency
	Bar Button Item Icons

	Using Auto Layout with Toolbars
	Making Toolbars Accessible
	Internationalizing Toolbars
	Debugging Toolbars
	Elements Similar to a Toolbar

	Web Views
	Content of Web Views (Programmatic)
	Behavior of Web Views
	Appearance of Web Views
	Using Auto Layout with Web Views
	Making Web Views Accessible
	Internationalizing Web Views
	Debugging Web Views
	Elements Similar to a Web View

	Part II: Controls
	About Controls
	Content of Controls
	Behavior of Controls
	Control States
	Control Events
	Target-Action Mechanism

	Appearance of Controls
	Content Alignment

	Using Auto Layout with Controls
	Making Controls Accessible

	Buttons
	Content of Buttons
	Behavior of Buttons
	Appearance of Buttons
	State
	Shadow
	Tint Color
	Title Attributes
	Images
	Edge Insets

	Using Auto Layout with Buttons
	Making Buttons Accessible
	Internationalizing Buttons
	Elements Similar to a Button

	Date Pickers
	Content of Date Pickers
	Behavior of Date Pickers
	Appearance of Date Pickers
	Using Auto Layout with Date Pickers
	Making Date Pickers Accessible
	Internationalizing Date Pickers
	Debugging Date Pickers
	Elements Similar to a Date Picker

	Page Controls
	Content of Page Controls
	Behavior of Page Controls
	Appearance of Page Controls
	Tint Color

	Using Auto Layout with Page Controls
	Making Page Controls Accessible
	Internationalizing Page Controls
	Debugging Page Controls
	Elements Similar to a Page Control

	Segmented Controls
	Content of Segmented Controls
	Behavior of Segmented Controls
	Appearance of Segmented Controls
	Tint Color
	Style
	Content Offset
	Images
	Title Attributes
	Segment Icons

	Using Auto Layout with Segmented Controls
	Making Segmented Controls Accessible
	Internationalizing Segmented Controls
	Debugging Segmented Controls
	Elements Similar to a Segmented Control

	Sliders
	Content of Sliders
	Behavior of Sliders
	Appearance of Sliders
	Minimum and Maximum Value Images
	Tint Color
	Track and Thumb Images (Programmatic)

	Using Auto Layout with Sliders
	Making Sliders Accessible
	Internationalizing Sliders
	Debugging Sliders
	Elements Similar to a Slider

	Steppers
	Content of Steppers
	Behavior of Steppers
	Appearance of Steppers
	Tint Color (Programmatic)
	Icons
	Background and Divider Images

	Using Auto Layout with Steppers
	Making Steppers Accessible
	Internationalizing Steppers
	Elements Similar to a Stepper

	Switches
	Content of Switches
	Behavior of Switches (Programmatic)
	Appearance of Switches
	Tint Color

	Using Auto Layout with Switches
	Making Switches Accessible
	Internationalizing Switches
	Debugging Switches
	Elements Similar to a Switch

	Text Fields
	Content of Text Fields
	Behavior of Text Fields
	Appearance of Text Fields
	Border Style
	Text Attributes
	Font Size
	Images

	Using Auto Layout with Text Fields
	Making Text Fields Accessible
	Internationalizing Text Fields
	Elements Similar to a Text Field

	Part III: Attributes Inspector Reference
	Activity Indicator View
	Activity Indicator View Attributes Inspector Reference
	Appearance and Behavior
	Behavior

	Bar Button Item
	Bar Button Item Attributes Inspector Reference
	Appearance

	Bar Item
	Bar Item Attributes Inspector Reference
	Appearance, Behavior, and Tagging

	Button
	Button Attributes Inspector Reference
	Type
	Appearance
	Title

	Behavior
	Shadow Offset
	Drawing

	Edge Insets

	Collection Reusable View
	Collection Reusable View Attributes Inspector Reference
	Cell Reuse

	Collection View
	Collection View Attributes Inspector Reference
	Layout, Scrolling, Header, and Footer
	Layout: Flow
	Layout: Custom

	Collection View Cell
	Collection View Cell Attributes Inspector Reference
	Cell Reuse

	Control
	Control Attributes Inspector Reference
	Layout
	Alignment

	Behavior
	Content

	Date Picker
	Date Picker Attributes Inspector Reference
	Functionality
	Date
	Constraints

	Count Down Timer

	Image View
	Image View Attributes Inspector Reference
	Images
	Behavior
	State

	Label
	Label Attributes Inspector Reference
	Text and Behavior
	Text
	Behavior

	Text Baseline and Line Breaks
	Text Sizing
	Text Highlight and Shadow

	Navigation Bar
	Navigation Bar Attributes Inspector Reference
	Appearance

	Navigation Item
	Navigation Item Attributes Inspector Reference
	PropertyGroup

	Page Control
	Page Control Attributes Inspector Reference
	Behavior and Pages
	Behavior

	Appearance

	Picker View
	Picker View Attributes Inspector Reference
	Behavior

	Progress View
	Progress View Attributes Inspector Reference
	Appearance and Progress

	Scroll View
	Scroll View Attributes Inspector Reference
	Appearance
	Scroll Indicators and Scrolling
	Scrollers

	Scroll Bounce
	Bounce

	Zooming
	Zoom

	Events and Zoom Bounce
	Touch

	Search Bar
	Search Bar Attributes Inspector Reference
	Search Term and Captions
	Appearance
	Capabilities
	Scope Titles
	Text Input

	Segmented Control
	Segmented Control Attributes Inspector Reference
	Appearance and Behavior
	State

	Segment Appearance and Behavior
	Behavior

	Slider
	Slider Attributes Inspector Reference
	Value
	Images
	Appearance
	Update Events

	Stepper
	Stepper Attributes Inspector Reference
	Value
	Behavior

	Switch
	Switch Attributes Inspector Reference
	Appearance and State

	Tab Bar
	Tab Bar Attributes Inspector Reference
	Appearance

	Tab Bar Item
	Tab Bar Item Attributes Inspector Reference
	Appearance

	Table View
	Table View Attributes Inspector Reference
	Appearance
	Separator

	Behavior
	Table Index

	Table View Cell
	Table View Cell Attributes Inspector Reference
	Style
	Cell Reuse
	Appearance
	Indentation and Behavior
	Indentation

	Text View
	Text View Attributes Inspector Reference
	Text
	Text

	Behavior
	Data Detection
	Detection

	Text Input and Keyboard

	Toolbar
	Toolbar Attributes Inspector Reference
	Appearance

	View
	View Attributes Inspector Reference
	Layout and Tagging
	Events
	Interaction

	Appearance
	Drawing and Sizing
	Drawing

	Sizing

	Web View
	Web View Attributes Inspector
	Scaling
	Detection

	Revision History

